How do our brainwaves perceive the passage of time? Quantifying neural correlates of time during a rhythm performance task

dc.contributor.advisorCos Aguilera, Ignasi
dc.contributor.authorDi Croce, Luca Eric
dc.date.accessioned2023-07-11T09:04:24Z
dc.date.available2023-07-11T09:04:24Z
dc.date.issued2023-06-13
dc.descriptionTreballs Finals de Grau d'Enginyeria Informàtica, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2023, Director: Ignasi Cos Aguileraca
dc.description.abstract[en] The aim of this project is to establish a methodology to quantify the extent to which different brainwave signatures vary in their past data retention, and to determine how other factors interact with these variations, using previously obtained EEG recordings. To achieve this, we quantified the amount of past values that strongly influence future values for each brainwave signature throughout different EEG time series. Specifically, we calculated the number of lags required for a univariate autoregressive computational model to predict a set of brainwave time-series with an error (RMSE) below a preset threshold. In this fashion, we could establish that a similar number of lags were required based on the brainwave signatures (alpha, beta, gamma, or unfiltered) throughout the different conditions of activities and the different EEG sets, with the number of lags required being around 3, 4, and 6 for alpha, beta, and gamma brainwaves, respectively, when trying to achieve a minimum RMSE value of 0.001. This covariation is displayed again when using a different sets of threshold RMSE values, with gamma consistently having a greater dependency to past data, and alpha a lesser one. Our results indicate that brainwave signatures that are more related to active states can use past data for a longer period of time than brainwave signatures related to relaxed states. Furthermore, they suggest that active-state brainwaves show a more dilated time perception than their relaxed counterparts. In future studies, this methodology may help to establish a technique to objectively analyze time perception variation through EEG readings.ca
dc.format.extent54 p.
dc.format.mimetypeapplication/pdf
dc.identifier.urihttps://hdl.handle.net/2445/200513
dc.language.isoengca
dc.rightsmemòria: cc-nc-nd (c) Luca Eric Di Croce, 2023
dc.rightscodi: GPL (c) Luca Eric Di Croce, 2023
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca
dc.rights.urihttp://www.gnu.org/licenses/gpl-3.0.ca.html
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.sourceTreballs Finals de Grau (TFG) - Enginyeria Informàtica
dc.subject.classificationElectroencefalografiaca
dc.subject.classificationPercepció del tempsca
dc.subject.classificationProgramarica
dc.subject.classificationTreballs de fi de grauca
dc.subject.classificationProcessament de dadesca
dc.subject.classificationNeurociència cognitivaca
dc.subject.otherElectroencephalographyen
dc.subject.otherTime perceptionen
dc.subject.otherComputer softwareen
dc.subject.otherData processingen
dc.subject.otherCognitive neuroscienceen
dc.subject.otherBachelor's thesesen
dc.titleHow do our brainwaves perceive the passage of time? Quantifying neural correlates of time during a rhythm performance taskca
dc.typeinfo:eu-repo/semantics/bachelorThesisca

Fitxers

Paquet original

Mostrant 1 - 2 de 2
Carregant...
Miniatura
Nom:
tfg_di_croce_luca_eric.pdf
Mida:
4.07 MB
Format:
Adobe Portable Document Format
Descripció:
Memòria
Carregant...
Miniatura
Nom:
codi.zip
Mida:
2.14 MB
Format:
ZIP file
Descripció:
Codi font