Time-based self-supervised learning for Wireless Capsule Endoscopy

dc.contributor.authorPascual i Guinovart, Guillem
dc.contributor.authorLaiz Treceño, Pablo
dc.contributor.authorGarcía, Albert
dc.contributor.authorWenzek, Hagen
dc.contributor.authorVitrià i Marca, Jordi
dc.contributor.authorSeguí Mesquida, Santi
dc.date.accessioned2023-02-21T10:39:48Z
dc.date.available2023-02-21T10:39:48Z
dc.date.issued2022-07
dc.date.updated2023-02-21T10:39:49Z
dc.description.abstractState-of-the-art machine learning models, and especially deep learning ones, are significantly data-hungry; they require vast amounts of manually labeled samples to function correctly. However, in most medical imaging fields, obtaining said data can be challenging. Not only the volume of data is a problem, but also the imbalances within its classes; it is common to have many more images of healthy patients than of those with pathology. Computer-aided diagnostic systems suffer from these issues, usually over-designing their models to perform accurately. This work proposes using self-supervised learning for wireless endoscopy videos by introducing a custom-tailored method that does not initially need labels or appropriate balance. We prove that using the inferred inherent structure learned by our method, extracted from the temporal axis, improves the detection rate on several domain-specific applications even under severe imbalance. State-of-the-art results are achieved in polyp detection, with 95.00 ± 2.09% Area Under the Curve, and 92.77 ± 1.20% accuracy in the CAD-CAP dataset.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec729208
dc.identifier.issn0010-4825
dc.identifier.urihttps://hdl.handle.net/2445/193849
dc.language.isoeng
dc.publisherElsevier Ltd
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.1016/j.compbiomed.2022.105631
dc.relation.ispartofComputers in Biology and Medicine, 2022, vol. 146
dc.relation.urihttps://doi.org/10.1016/j.compbiomed.2022.105631
dc.rightscc-by-nc-nd (c) Guillem Pascual i Guinovart et al., 2022
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.sourceArticles publicats en revistes (Matemàtiques i Informàtica)
dc.subject.classificationCàpsula endoscòpica
dc.subject.classificationDiagnòstic per la imatge
dc.subject.classificationAprenentatge automàtic
dc.subject.otherCapsule endoscopy
dc.subject.otherDiagnostic imaging
dc.subject.otherMachine learning
dc.titleTime-based self-supervised learning for Wireless Capsule Endoscopy
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
729208.pdf
Mida:
5.46 MB
Format:
Adobe Portable Document Format