Carregant...
Miniatura

Tipus de document

Article

Versió

Versió acceptada

Data de publicació

Llicència de publicació

cc-by-nc-nd (c) Elsevier, 2018
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/120580

The set of unattainable points for the Rational Hermite Interpolation Problem

Títol de la revista

Director/Tutor

ISSN de la revista

Títol del volum

Resum

We describe geometrically and algebraically the set of unattainable points for the Rational Hermite Interpolation Problem (i.e. those points where the problem does not have a solution). We show that this set is a union of equidimensional complete intersection varieties of odd codimension, the number of them being equal to the minimum between the degrees of the numerator and denominator of the problem. Each of these equidimensional varieties can be further decomposed as a union of as many rational (irreducible) varieties as input data points. We exhibit algorithms and equations defining all these objects.

Citació

Citació

CORTADELLAS BENÍTEZ, Teresa, D'ANDREA, Carlos, MONTORO LÓPEZ, M. eulàlia. The set of unattainable points for the Rational Hermite Interpolation Problem. _Linear Algebra and its Applications_. 2018. Vol. 538, núm. 116-142. [consulta: 30 de gener de 2026]. ISSN: 0024-3795. [Disponible a: https://hdl.handle.net/2445/120580]

Exportar metadades

JSON - METS

Compartir registre