Green tea extracts containing Epigallocatechin-3-Gallate modulate facial development in Down syndrome

dc.contributor.authorStarbuck, John M.
dc.contributor.authorLlambrich, Sergi
dc.contributor.authorGonzález, Rubén
dc.contributor.authorAlbaigès, Júlia
dc.contributor.authorSarlé, Anna
dc.contributor.authorWouters, Jens
dc.contributor.authorGonzález, Alejandro
dc.contributor.authorSevillano, Xavier
dc.contributor.authorSharpe, James
dc.contributor.authorDe la Torre, Rafael
dc.contributor.authorDierssen, Mara
dc.contributor.authorVande Velde, Greetje
dc.contributor.authorMartínez Abadías, Neus, 1978-
dc.date.accessioned2021-03-17T13:43:31Z
dc.date.available2021-03-17T13:43:31Z
dc.date.issued2021-02-25
dc.date.updated2021-03-17T13:43:31Z
dc.description.abstractrisomy of human chromosome 21 (Down syndrome, DS) alters development of multiple organ systems, including the face and underlying skeleton. Besides causing stigmata, these facial dysmorphologies can impair vital functions such as hearing, breathing, mastication, and health. To investigate the therapeutic potential of green tea extracts containing epigallocatechin-3-gallate (GTE-EGCG) for alleviating facial dysmorphologies associated with DS, we performed an experimental study with continued pre- and postnatal treatment with two doses of GTE-EGCG supplementation in a mouse model of DS, and an observational study of children with DS whose parents administered EGCG as a green tea supplement. We evaluated the effect of high (100 mg/kg/day) or low doses (30 mg/kg/day) of GTE-EGCG, administered from embryonic day 9 to post-natal day 29, on the facial skeletal development in the Ts65Dn mouse model. In a cross-sectional observational study, we assessed the facial shape in DS and evaluated the effects of self-medication with green tea extracts in children from 0 to 18 years old. The main outcomes are 3D quantitative morphometric measures of the face, acquired either with micro-computed tomography (animal study) or photogrammetry (human study). The lowest experimentally tested GTE-EGCG dose improved the facial skeleton morphology in a mouse model of DS. In humans, GTE-EGCG supplementation was associated with reduced facial dysmorphology in children with DS when treatment was administered during the first 3 years of life. However, higher GTE-EGCG dosing disrupted normal development and increased facial dysmorphology in both trisomic and euploid mice. We conclude that GTE-EGCG modulates facial development with dose-dependent effects. Considering the potentially detrimental effects observed in mice, the therapeutic relevance of controlled GTE-EGCG administration towards reducing facial dysmorphology in young children with Down syndrome has yet to be confirmed by clinical studies.
dc.format.extent13 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec706245
dc.identifier.issn2045-2322
dc.identifier.pmid33633179
dc.identifier.urihttps://hdl.handle.net/2445/175252
dc.language.isoeng
dc.publisherNature Publishing Group
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.1038/s41598-021-83757-1
dc.relation.ispartofScientific Reports, 2021, vol. 11, num. 4715
dc.relation.urihttps://doi.org/10.1038/s41598-021-83757-1
dc.rightscc-by (c) Starbuck, John M. et al., 2021
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es
dc.sourceArticles publicats en revistes (Biologia Evolutiva, Ecologia i Ciències Ambientals)
dc.subject.classificationCromosomes
dc.subject.classificationSíndrome de Down
dc.subject.classificationTe
dc.subject.otherChromosomes
dc.subject.otherDown syndrome
dc.subject.otherTea
dc.titleGreen tea extracts containing Epigallocatechin-3-Gallate modulate facial development in Down syndrome
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
706245.pdf
Mida:
1.57 MB
Format:
Adobe Portable Document Format