Au-Manganese Oxide Nanostructures by a Plasma-Assisted Process as Electrocatalysts for Oxygen Evolution: A Chemico-Physical Investigation

dc.contributor.authorBigiani, Lorenzo
dc.contributor.authorGasparotto, Alberto
dc.contributor.authorAndreu Arbella, Teresa
dc.contributor.authorVerbeeck, Johan
dc.contributor.authorSada, Cinzia
dc.contributor.authorModin, Evgeny
dc.contributor.authorLevedev, Oleg I.
dc.contributor.authorMorante i Lleonart, Joan Ramon
dc.contributor.authorBarreca, Davide
dc.contributor.authorMaccato, Chiara
dc.date.accessioned2022-01-17T13:51:14Z
dc.date.available2022-01-17T13:51:14Z
dc.date.issued2020-09-24
dc.date.updated2022-01-17T13:51:14Z
dc.description.abstractEarth-abundant and eco-friendly manganese oxides are promising platforms for the oxygen evolution reaction (OER) in water electrolysis. Herein, a versatile and potentially scalable route to gold-decorated manganese oxide-based OER electrocatalysts is reported. In particular, MnxOy(MnO2, Mn2O3) host matrices are grown on conductive glasses by plasma assisted-chemical vapor deposition (PA-CVD), and subsequently functionalized with gold nanoparticles (guest) as OER activators by radio frequency (RF)-sputtering. The final selective obtainment of MnO2- or Mn2O3-based systems is then enabled by annealing under oxidizing or inert atmosphere, respectively. A detailed material characterization evidences the formation of high-purity Mn(x)O(y)dendritic nanostructures with an open morphology and an efficient guest dispersion into the host matrices. The tailoring of Mn(x)O(y)phase composition and host-guest interactions has a remarkable influence on OER activity yielding, for the best performing Au/Mn(2)O(3)system, a current density of approximate to 5 mA cm(-2)at 1.65 V versus the reversible hydrogen electrode (RHE) and an overpotential close to 300 mV at 1 mA cm(-2). Such results, comparing favorably with literature data on manganese oxide-based materials, highlight the importance of compositional control, as well as of surface and interface engineering, to develop low-cost and efficient anode nanocatalysts for water splitting applications.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec706252
dc.identifier.issn2366-7486
dc.identifier.urihttps://hdl.handle.net/2445/182419
dc.language.isoeng
dc.publisherWiley-VCH
dc.relation.isformatofVersió postprint del document publicat a: https://doi.org/10.1002/adsu.202000177
dc.relation.ispartofAdvanced Sustainable Systems, 2020, vol. 5, num. 11
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/H2020/823717/EU//ESTEEM3
dc.relation.urihttps://doi.org/10.1002/adsu.202000177
dc.rights(c) Wiley-VCH, 2020
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.sourceArticles publicats en revistes (Ciència dels Materials i Química Física)
dc.subject.classificationÒxid de magnesi
dc.subject.classificationOxigen
dc.subject.classificationNanoestructures
dc.subject.otherMagnesium oxide
dc.subject.otherOxygen
dc.subject.otherNanostructures
dc.titleAu-Manganese Oxide Nanostructures by a Plasma-Assisted Process as Electrocatalysts for Oxygen Evolution: A Chemico-Physical Investigation
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/acceptedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
706252.pdf
Mida:
1.02 MB
Format:
Adobe Portable Document Format