Carregant...
Miniatura

Tipus de document

Article

Versió

Versió publicada

Data de publicació

Llicència de publicació

cc by (c) Youssef El-Khatib et al., 2023
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/220282

Approximate option pricing under a two factor Heston-Kou stochastic volatility model

Títol de la revista

Director/Tutor

ISSN de la revista

Títol del volum

Resum

Under a two-factor stochastic volatility jump (2FSVJ) model we obtain an exact decomposition formula for a plain vanilla option price and a second-order approximation of this formula, using Itô calculus techniques. The 2FSVJ model is a generalization of several models described in the literature such as Heston (Rev Financ Stud 6(2):327–343, 1993); Bates (Rev Financ Stud 9(1):69–107, 1996); Kou (Manag Sci 48(8):1086–1101, 2002); Christoffersen et al. (Manag Sci 55(12):1914–1932, 2009) models. Thus, the aim of this study is to extend some approximate pricing formulas described in the literature, like formulas in Alòs (Finance Stoch 16(3):403–422, 2012); Merino et al. (Int J Theor Appl Finance 21(08):1850052, 2018); Gulisashvili et al. (J Comput Finance 24(1), 2020), to pricing under the more general 2FSVJ model. Moreover, we provide numerical illustrations of our pricing method and its accuracy and computational advantage under double exponential and log-normal jumps. Numerically, our pricing method performs very well compared to the Fourier integral method. The performance is ideal for out-of-the-money options as well as for short maturities.

Citació

Citació

EL-KHATIB, Youssef, MAKUMBE, Zororo stanelake, VIVES I SANTA EULÀLIA, Josep. Approximate option pricing under a two factor Heston-Kou stochastic volatility model. _Computational Management Science_. 2023. Vol. 21. [consulta: 24 de gener de 2026]. ISSN: 1619-697X. [Disponible a: https://hdl.handle.net/2445/220282]

Exportar metadades

JSON - METS

Compartir registre