Carregant...
Miniatura

Tipus de document

Article

Versió

Versió publicada

Data de publicació

Llicència de publicació

cc-by (c) Matei, Alina et al., 2021
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/179827

Towards Eating Habits Discovery in Egocentric Photo-Streams

Títol de la revista

Director/Tutor

ISSN de la revista

Títol del volum

Resum

Eating habits are learned throughout the early stages of our lives. However, it is not easy to be aware of how our food-related routine affects our healthy living. In this work, we address the unsupervised discovery of nutritional habits from egocentric photo-streams. We build a food-related behavioral pattern discovery model, which discloses nutritional routines from the activities performed throughout the days. To do so, we rely on Dynamic-Time-Warping for the evaluation of similarity among the collected days. Within this framework, we present a simple, but robust and fast novel classification pipeline that outperforms the state-of-the-art on food-related image classification with a weighted accuracy and F-score of 70% and 63%, respectively. Later, we identify days composed of nutritional activities that do not describe the habits of the person as anomalies in the daily life of the user with the Isolation Forest method. Furthermore, we show an application for the identification of food-related scenes when the camera wearer eats in isolation. Results have shown the good performance of the proposed model and its relevance to visualize the nutritional habits of individuals.

Matèries (anglès)

Citació

Citació

MATEI, Alina, GLAVAN, Andreea, RADEVA, Petia, TALAVERA MARTÍNEZ, Estefanía. Towards Eating Habits Discovery in Egocentric Photo-Streams. _IEEE Access_. 2021. Vol. 9, núm. 17495-17506. [consulta: 21 de gener de 2026]. ISSN: 2169-3536. [Disponible a: https://hdl.handle.net/2445/179827]

Exportar metadades

JSON - METS

Compartir registre