Carregant...
Fitxers
Tipus de document
ArticleVersió
Versió publicadaData de publicació
Tots els drets reservats
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/18833
Volatility: A hidden Markov process in financial time series
Títol de la revista
Director/Tutor
ISSN de la revista
Títol del volum
Recurs relacionat
Resum
Volatility characterizes the amplitude of price return fluctuations. It is a central magnitude in finance closely related to the risk of holding a certain asset. Despite its popularity on trading floors, volatility is unobservable and only the price is known. Diffusion theory has many common points with the research on volatility, the key of the analogy being that volatility is a time-dependent diffusion coefficient of the random walk for the price return. We present a formal procedure to extract volatility from price data by assuming that it is described by a hidden Markov process which together with the price forms a two-dimensional diffusion process. We derive a maximum-likelihood estimate of the volatility path valid for a wide class of two-dimensional diffusion processes. The choice of the exponential Ornstein-Uhlenbeck (expOU) stochastic volatility model performs remarkably well in inferring the hidden state of volatility. The formalism is applied to the Dow Jones index. The main results are that (i) the distribution of estimated volatility is lognormal, which is consistent with the expOU model, (ii) the estimated volatility is related to trading volume by a power law of the form $\ensuremath{\sigma}\ensuremath{\propto}{V}^{0.55}$, and (iii) future returns are proportional to the current volatility, which suggests some degree of predictability for the size of future returns.
Matèries
Matèries (anglès)
Citació
Citació
EISLER, Zoltán, PERELLÓ, Josep, MASOLIVER, Jaume. Volatility: A hidden Markov process in financial time series. _Physical Review E_. 2007. Vol. 76, núm. 5, pàgs. 056105-1-056105-11. [consulta: 20 de gener de 2026]. ISSN: 1063-651X. [Disponible a: https://hdl.handle.net/2445/18833]