Carregant...
Miniatura

Tipus de document

Article

Versió

Versió acceptada

Data de publicació

Llicència de publicació

cc-by-nc-nd (c) Elsevier B.V., 2020
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/172184

Classification of quinoa varieties based on protein fingerprinting by capillary electrophoresis with ultraviolet absorption diode array detection and advanced chemometrics

Títol de la revista

Director/Tutor

ISSN de la revista

Títol del volum

Resum

Quinoa (Chenopodium quinoa Willd.) is an andean grain with exceptional nutritional properties that has been progressively introduced in western countries as a protein-rich super food with a broad amino acid spectrum. Quinoa is consumed as whole grain, but it is also milled to produce high-value flour, which is susceptible to adulteration. Therefore, there is a growing interest in developing novel analytical methods to get further information about quinoa at the chemical level. In this study, we developed a rapid and simple capillary electrophoresis-ultraviolet absorption diode array detection (CE-UV-DAD) method to obtain characteristic multiwavelength electrophoretic profiles of soluble protein extracts from different quinoa grain varieties. Then, advanced chemometric methods (i.e. multivariate curve resolution alternating least squares, MCR-ALS, followed by principal component analysis, PCA, and partial least squares discriminant analysis, PLS-DA) were applied to deconvolute the components present in the electropherograms and classify the quinoa varieties according to their differential protein composition.

Citació

Citació

GALINDO-LUJÁN, Rocío, PONT VILLANUEVA, Laura, SANZ NEBOT, María victoria, BENAVENTE MORENO, Fernando j. (julián). Classification of quinoa varieties based on protein fingerprinting by capillary electrophoresis with ultraviolet absorption diode array detection and advanced chemometrics. _Food Chemistry_. 2020. Vol. 341, núm. 128207. [consulta: 14 de gener de 2026]. ISSN: 0308-8146. [Disponible a: https://hdl.handle.net/2445/172184]

Exportar metadades

JSON - METS

Compartir registre