Ultrastructural Imaging of Activity-Dependent Synaptic Membrane-Trafficking Events in Cultured Brain Slices

dc.contributor.authorImig, Cordelia
dc.contributor.authorLópez Murcia, Francisco José
dc.contributor.authorMaus, Lydia
dc.contributor.authorHojas García-Plaza, Inés
dc.contributor.authorMortensen, Lena Sünke
dc.contributor.authorSchwark, Manuela
dc.contributor.authorSchwarze, Valentin
dc.contributor.authorAngibaud, Julie
dc.contributor.authorNägerl, U. Valentin
dc.contributor.authorTaschenberger, Holger
dc.contributor.authorBrose, Nils
dc.contributor.authorCooper, Benjamin H.
dc.date.accessioned2024-01-31T15:56:17Z
dc.date.available2024-01-31T15:56:17Z
dc.date.issued2020-12
dc.date.updated2024-01-31T15:56:17Z
dc.description.abstractElectron microscopy can resolve synapse ultrastructure with nanometer precision, but the capture of time-resolved, activity-dependent synaptic membrane-trafficking events has remained challenging, particularly in functionally distinct synapses in a tissue context. We present a method that combines optogenetic stimulation-coupled cryofixation ("flash-and-freeze") and electron microscopy to visualize membrane trafficking events and synapse-state-specific changes in presynaptic vesicle organization with high spatiotemporal resolution in synapses of cultured mouse brain tissue. With our experimental workflow, electrophysiological and "flash-and-freeze" electron microscopy experiments can be performed under identical conditions in artificial cerebrospinal fluid alone, without the addition of external cryoprotectants, which are otherwise needed to allow adequate tissue preservation upon freezing. Using this approach, we reveal depletion of docked vesicles and resolve compensatory membrane recycling events at individual presynaptic active zones at hippocampal mossy fiber synapses upon sustained stimulation.
dc.format.extent47 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec726308
dc.identifier.issn0896-6273
dc.identifier.pmid32991831
dc.identifier.urihttps://hdl.handle.net/2445/206840
dc.language.isoeng
dc.publisherCell Press
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.1016/j.neuron.2020.09.004
dc.relation.ispartofNeuron, 2020, vol. 108, num.5, p. 843-860
dc.relation.urihttps://doi.org/10.1016/j.neuron.2020.09.004
dc.rightscc-by-nc-nd (c) Imig, Cordelia et al, 2020
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.sourceArticles publicats en revistes (Patologia i Terapèutica Experimental)
dc.subject.classificationMicroscòpia electrònica
dc.subject.classificationCervell
dc.subject.classificationSinapsi
dc.subject.otherElectron microscopy
dc.subject.otherBrain
dc.subject.otherSynapses
dc.titleUltrastructural Imaging of Activity-Dependent Synaptic Membrane-Trafficking Events in Cultured Brain Slices
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
253344.pdf
Mida:
38.41 MB
Format:
Adobe Portable Document Format