All-optical electrophysiology for high-throughput functional characterization of a human iPSC-Derived motor neuron model of ALS

dc.contributor.authorKiskinis, Evangelos
dc.contributor.authorKralj, Joel M.
dc.contributor.authorZou, Peng
dc.contributor.authorWeinstein, Eli N.
dc.contributor.authorZhang, Honkang
dc.contributor.authorTsioras, Konstantinos
dc.contributor.authorWiskow, Ole
dc.contributor.authorOrtega Cano, Juan Alberto
dc.contributor.authorEggan, Kevin
dc.contributor.authorCohen, Adam E.
dc.date.accessioned2022-10-07T17:30:11Z
dc.date.available2022-10-07T17:30:11Z
dc.date.issued2018-05-17
dc.date.updated2022-10-07T17:30:12Z
dc.description.abstractHuman induced pluripotent stem cell (iPSC)-derived neurons are an attractive substrate for modeling disease, yet the heterogeneity of these cultures presents a challenge for functional characterization by manual patch-clamp electrophysiology. Here, we describe an optimized all-optical electrophysiology, 'Optopatch,' pipeline for high-throughput functional characterization of human iPSC-derived neuronal cultures. We demonstrate the method in a human iPSC-derived motor neuron (iPSC-MN) model of amyotrophic lateral sclerosis (ALS). In a comparison of iPSC-MNs with an ALS-causing mutation (SOD1 A4V) with their genome-corrected controls, the mutants showed elevated spike rates under weak or no stimulus and greater likelihood of entering depolarization block under strong optogenetic stimulus. We compared these results with numerical simulations of simple conductance-based neuronal models and with literature results in this and other iPSC-based models of ALS. Our data and simulations suggest that deficits in slowly activating potassium channels may underlie the changes in electrophysiology in the SOD1 A4V mutation.
dc.format.extent14 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec713979
dc.identifier.issn2213-6711
dc.identifier.urihttps://hdl.handle.net/2445/189722
dc.language.isoeng
dc.publisherElsevier
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.1016/j.stemcr.2018.04.020
dc.relation.ispartofStem Cell Reports, 2018, vol. 10, num. 6, p. 1991-2004
dc.relation.urihttps://doi.org/10.1016/j.stemcr.2018.04.020
dc.rightscc-by (c) Kiskinis, Evangelos et al., 2018
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.sourceArticles publicats en revistes (Patologia i Terapèutica Experimental)
dc.subject.classificationElectrofisiologia
dc.subject.classificationEsclerosi lateral amiotròfica
dc.subject.classificationNeurones motores
dc.subject.classificationCèl·lules mare
dc.subject.otherElectrophysiology
dc.subject.otherAmyotrophic lateral sclerosis
dc.subject.otherMotor neurons
dc.subject.otherStem cells
dc.titleAll-optical electrophysiology for high-throughput functional characterization of a human iPSC-Derived motor neuron model of ALS
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
713979.pdf
Mida:
19.08 MB
Format:
Adobe Portable Document Format