Quantitative Proteomic Approach Reveals Altered Metabolic Pathways in Response to the Inhibition of Lysine Deacetylases in A549 Cells under Normoxia and Hypoxia.

dc.contributor.authorMartín-Bernabé, Alfonso
dc.contributor.authorTarragó-Celada, Josep
dc.contributor.authorCunin, Valérie
dc.contributor.authorMichelland, Sylvie
dc.contributor.authorCortés Giràldez, Roldàn
dc.contributor.authorPoignant, Johann
dc.contributor.authorBoyault, Cyril
dc.contributor.authorRachidi, Walid
dc.contributor.authorBourgoin-Voillard, Sandrine
dc.contributor.authorCascante i Serratosa, Marta
dc.contributor.authorSeve, Michel
dc.date.accessioned2022-03-16T17:19:40Z
dc.date.available2022-03-16T17:19:40Z
dc.date.issued2021-03-25
dc.date.updated2022-03-16T17:19:41Z
dc.description.abstractGrowing evidence is showing that acetylation plays an essential role in cancer, but studies on the impact of KDAC inhibition (KDACi) on the metabolic profile are still in their infancy. Here, we analyzed, by using an iTRAQ-based quantitative proteomics approach, the changes in the proteome of KRAS-mutated non-small cell lung cancer (NSCLC) A549 cells in response to trichostatin-A (TSA) and nicotinamide (NAM) under normoxia and hypoxia. Part of this response was further validated by molecular and biochemical analyses and correlated with the proliferation rates, apoptotic cell death, and activation of ROS scavenging mechanisms in opposition to the ROS production. Despite the differences among the KDAC inhibitors, up-regulation of glycolysis, TCA cycle, oxidative phosphorylation and fatty acid synthesis emerged as a common metabolic response underlying KDACi. We also observed that some of the KDACi effects at metabolic levels are enhanced under hypoxia. Furthermore, we used a drug repositioning machine learning approach to list candidate metabolic therapeutic agents for KRAS mutated NSCLC. Together, these results allow us to better understand the metabolic regulations underlying KDACi in NSCLC, taking into account the microenvironment of tumors related to hypoxia, and bring new insights for the future rational design of new therapies.
dc.format.extent28 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec711729
dc.identifier.issn1661-6596
dc.identifier.urihttps://hdl.handle.net/2445/184177
dc.language.isoeng
dc.publisherMDPI
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.3390/ijms22073378
dc.relation.ispartofInternational Journal of Molecular Sciences, 2021, vol. 22, num. 7, p. 3378
dc.relation.urihttps://doi.org/10.3390/ijms22073378
dc.rightscc-by (c) Martín-Bernabé, Alfonso et al., 2021
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.sourceArticles publicats en revistes (Bioquímica i Biomedicina Molecular)
dc.subject.classificationCàncer
dc.subject.classificationMetabolisme
dc.subject.classificationProteòmica
dc.subject.otherCancer
dc.subject.otherMetabolism
dc.subject.otherProteomics
dc.titleQuantitative Proteomic Approach Reveals Altered Metabolic Pathways in Response to the Inhibition of Lysine Deacetylases in A549 Cells under Normoxia and Hypoxia.
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
711729.pdf
Mida:
4.24 MB
Format:
Adobe Portable Document Format