Classification of Honeypot Data Using the MITRE Framework

dc.contributor.advisorPuertas i Prats, Eloi
dc.contributor.authorCamps i Regàs, Hug
dc.date.accessioned2025-09-15T08:23:26Z
dc.date.available2025-09-15T08:23:26Z
dc.date.issued2025-06-30
dc.descriptionTreballs finals del Màster de Fonaments de Ciència de Dades, Facultat de matemàtiques, Universitat de Barcelona. Any: 2025. Tutor: Eloi Puertas i Pratsca
dc.description.abstractProactive cybersecurity measures are essential for effective risk mitigation in increasingly complex and evolving digital environments. Achieving this requires not only the collection of relevant data but also its accurate interpretation and the development of specialized analytical frameworks. This project focuses on addressing the challenge of interpreting cyber threat data by classifying honeypot data, provided by the Global Cyber Alliance (GCA), according to the MITRE ATT&CK Matrix—a widely recognized framework for understanding adversarial behavior. In an era dominated by large language models (LLMs), we investigate an alternative approach based on smaller, specialized models. Specifically, we design a custom architecture of lightweight models and train them for the task, evaluating their performance across various configurations. Our findings demonstrate that these models can, in certain scenarios, outperform larger LLMs in both accuracy and efficiency, offering a more sustainable and cost-effective solution for targeted cybersecurity applications.ca
dc.format.extent35 p.
dc.format.mimetypeapplication/pdf
dc.identifier.urihttps://hdl.handle.net/2445/223152
dc.language.isoengca
dc.rightscc-by-nc-nd (c) Hug Camps i Regàs, 2025
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.sourceMàster Oficial - Fonaments de la Ciència de Dades
dc.subject.classificationTractament del llenguatge natural (Informàtica)
dc.subject.classificationNatural language processing (Computer science)
dc.subject.classificationSeguretat de les xarxes d'ordinadors
dc.subject.classificationTreballs de fi de màster
dc.subject.otherNatural language processing (Computer science)
dc.subject.otherComputer security
dc.subject.otherComputer network security
dc.subject.otherMaster's thesis
dc.titleClassification of Honeypot Data Using the MITRE Frameworkca
dc.typeinfo:eu-repo/semantics/masterThesisca

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
TFM_Camps_Regas_Hug.pdf
Mida:
916.48 KB
Format:
Adobe Portable Document Format
Descripció:
Memòria