LLM Adaptation Techniques. Evaluating RAG Strategies

dc.contributor.advisorPuertas i Prats, Eloi
dc.contributor.authorCastanyer Bibiloni, Francesc Josep
dc.date.accessioned2025-05-20T10:03:58Z
dc.date.available2025-05-20T10:03:58Z
dc.date.issued2025-01-17
dc.descriptionTreballs finals del Màster de Fonaments de Ciència de Dades, Facultat de matemàtiques, Universitat de Barcelona. Any: 2025. Tutor: Eloi Puertas i Pratsca
dc.description.abstractThis thesis explores the application of Retrieval-Augmented Generation (RAG) systems to optimize question answering tasks, addressing limitations of Large Language Models (LLMs) in scalability, efficiency, and domain adaptability. A theoretical foundation is established, highlighting RAG’s role in integrating external knowledge to enhance language models. A RAG pipeline is implemented and evaluated through experiments analyzing embedding models, similarity metrics, retrieval parameters (k), and re-ranking using cross-encoders. Results demonstrate that re-ranking improves retrieval accuracy, even with noisy, large-scale datasets, and highlight trade-offs between retrieval scope and generative performance. This study underscores RAG’s potential as a scalable alternative to finetuning, enabling efficient adaptation to dynamic datasets. Future research could explore advanced RAG variants and hybrid methods for broader applications. The corresponding code notebook can be found on the following GitHub repository, https://github.com/XiscoCasta/LLM-adaptation-techniques.-Evaluating-RAG-modelsen
dc.format.extent40 p.
dc.format.mimetypeapplication/pdf
dc.identifier.urihttps://hdl.handle.net/2445/221134
dc.language.isoengca
dc.rightscc-by-nc-nd (c) Francesc Josep Castanyer Bibiloni, 2025
dc.rightscodi: GPL (c) Francesc Josep Castanyer Bibiloni, 2025
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.rights.urihttp://www.gnu.org/licenses/gpl-3.0.ca.html*
dc.sourceMàster Oficial - Fonaments de la Ciència de Dades
dc.subject.classificationTractament del llenguatge natural (Informàtica)
dc.subject.classificationIntel·ligència artificial
dc.subject.classificationXarxes neuronals (Informàtica)
dc.subject.classificationTreballs de fi de màster
dc.subject.otherNatural language processing (Computer science)
dc.subject.otherArtificial intelligence
dc.subject.otherNeural networks (Computer science)
dc.subject.otherMaster's thesis
dc.titleLLM Adaptation Techniques. Evaluating RAG Strategiesca
dc.typeinfo:eu-repo/semantics/masterThesisca

Fitxers

Paquet original

Mostrant 1 - 2 de 2
Carregant...
Miniatura
Nom:
tfm_Castanyer_Bibiloni_Francesc_Josep.pdf
Mida:
436.47 KB
Format:
Adobe Portable Document Format
Descripció:
Memòria
Carregant...
Miniatura
Nom:
code.zip
Mida:
35.36 KB
Format:
ZIP file
Descripció:
Codi font