Carregant...
Fitxers
Tipus de document
ArticleVersió
Versió publicadaData de publicació
Tots els drets reservats
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/12325
Minimum-uncertaity states and pseudoclassical dynamics. II
Títol de la revista
Director/Tutor
ISSN de la revista
Títol del volum
Resum
The set of initial conditions for which the pseudoclassical evolution algorithm (and minimality conservation) is verified for Hamiltonians of degrees N (N>2) is explicitly determined through a class of restrictions for the corresponding classical trajectories, and it is proved to be at most denumerable. Thus these algorithms are verified if and only if the system is quadratic except for a set of measure zero. The possibility of time-dependent a-equivalence classes is studied and its physical interpretation is presented. The implied equivalence of the pseudoclassical and Ehrenfest algorithms and their relationship with minimality conservation is discussed in detail. Also, the explicit derivation of the general unitary operator which linearly transforms minimum-uncertainty states leads to the derivation, among others, of operators with a general geometrical interpretation in phase space, such as rotations (parity, Fourier).
Matèries
Matèries (anglès)
Citació
Citació
CANIVELL CRETCHLEY, Víctor, SEGLAR, P. (pedro). Minimum-uncertaity states and pseudoclassical dynamics. II. _Physical Review D_. 1978. Vol. 18, núm. 4, pàgs. 1082-1094. [consulta: 23 de gener de 2026]. ISSN: 0556-2821. [Disponible a: https://hdl.handle.net/2445/12325]