Malonyl coenzymeA decarboxylase regulates lipid and glucose metabolism in human skeletal muscle

dc.contributor.authorBouzakri, Karim
dc.contributor.authorAustin, Reginald
dc.contributor.authorRune, Anna
dc.contributor.authorLassman, Michael E.
dc.contributor.authorGarcía-Roves, Pablo M. (Pablo Miguel)
dc.contributor.authorBerger, Joel P.
dc.contributor.authorKrook, Anna
dc.contributor.authorChibalin, Alexander V.
dc.contributor.authorZhang, Bei B.
dc.contributor.authorZierath, Juleen R.
dc.date.accessioned2019-06-14T13:22:31Z
dc.date.available2019-06-14T13:22:31Z
dc.date.issued2008-06
dc.date.updated2019-06-14T13:22:31Z
dc.description.abstractObjective: malonyl coenzyme A (CoA) decarboxylase (MCD) is a key enzyme responsible for malonyl-CoA turnover and functions in the control of the balance between lipid and glucose metabolism. We utilized RNA interference (siRNA)-based gene silencing to determine the direct role of MCD on metabolic responses in primary human skeletal muscle. Research design and methods: we used siRNA to silence MCD gene expression in cultured human myotubes from healthy volunteers (seven male and seven female) with no known metabolic disorders. Thereafter, we determined lipid and glucose metabolism and signal transduction under basal and insulin-stimulated conditions. Results: RNA interference-based silencing of MCD expression (75% reduction) increased malonyl-CoA levels twofold and shifted substrate utilization from lipid to glucose oxidation. RNA interference-based depletion of MCD reduced basal palmitate oxidation. In parallel with this reduction, palmitate uptake was decreased under basal (40%) and insulin-stimulated (49%) conditions compared with myotubes transfected with a scrambled sequence. MCD silencing increased basal and insulin-mediated glucose oxidation 1.4- and 2.6-fold, respectively, compared with myotubes transfected with a scrambled sequence. In addition, glucose transport and cell-surface GLUT4 content was increased. In contrast, insulin action on IRS-1 tyrosine phosphorylation, tyrosine-associated phosphatidylinositol (PI) 3-kinase activity, Akt, and glycogen synthase kinase (GSK) phosphorylation was unaltered between myotubes transfected with siRNA against MCD versus a scrambled sequence. Conclusions: these results provide evidence that MCD silencing suppresses lipid uptake and enhances glucose uptake in primary human myotubes. In conclusion, MCD expression plays a key reciprocal role in the balance between lipid and glucose metabolism.
dc.format.extent9 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec653045
dc.identifier.issn0012-1797
dc.identifier.pmid18314420
dc.identifier.urihttps://hdl.handle.net/2445/135121
dc.language.isoeng
dc.publisherAmerican Diabetes Association
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.2337/db07-0583
dc.relation.ispartofDiabetes, 2008, vol. 57, num. 6, p. 1508-1516
dc.relation.urihttps://doi.org/10.2337/db07-0583
dc.rightscc-by-nc-nd (c) American Diabetes Association, 2008
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es
dc.sourceArticles publicats en revistes (Ciències Fisiològiques)
dc.subject.classificationMetabolisme
dc.subject.classificationÀcids grassos
dc.subject.classificationGlucosa
dc.subject.classificationEsquelet humà
dc.subject.classificationMúsculs
dc.subject.otherMetabolism
dc.subject.otherFatty acids
dc.subject.otherGlucose
dc.subject.otherHuman skeleton
dc.subject.otherMuscles
dc.titleMalonyl coenzymeA decarboxylase regulates lipid and glucose metabolism in human skeletal muscle
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
653045.pdf
Mida:
254.26 KB
Format:
Adobe Portable Document Format