Cluster Beam Study of (MgSiO3)+-Based Monomeric Silicate Species and Their Interaction with Oxygen: Implications for Interstellar Astrochemistry

dc.contributor.authorMariñoso Guiu, Joan
dc.contributor.authorGhejan, Bianca Andreea
dc.contributor.authorBernhardt, Thorsten M.
dc.contributor.authorBakker, Joost M.
dc.contributor.authorLang, Sandra M.
dc.contributor.authorBromley, Stefan Thomas
dc.date.accessioned2023-02-20T10:23:51Z
dc.date.available2023-02-20T10:23:51Z
dc.date.issued2022-10-06
dc.date.updated2023-02-20T10:23:52Z
dc.description.abstractSilicates are ubiquitously found as small dust grains throughout the universe. These particles are frequently subject to high-energy processes and subsequent condensation in the interstellar medium (ISM), where they are broken up into many ultrasmall silicate fragments. These abundant molecular-sized silicates likely play an important role in astrochemistry. By approximately mimicking silicate dust grain processing occurring in the diffuse ISM by ablation/cooling of a Mg/Si source material in the presence of O2, we observed the creation of stable clusters based on discrete pyroxene monomers (MgSiO3+), which traditionally have only been considered possible as constituents of bulk silicate materials. Our study suggests that such pyroxene monomer-based clusters could be highly abundant in the ISM from the processing of larger silicate dust grains. A detailed analysis, by infrared multiple-photon dissociation (IR-MPD) spectroscopy and density functional theory (DFT) calculations, reveals the structures and properties of these monomeric silicate species. We find that the clusters interact strongly with oxygen, with some stable cluster isomers having a silicate monomeric core bound to an ozone-like moiety. The general high tendency of these monomeric silicate species to strongly adsorb O2 molecules also suggests that they could be relevant to the observed and unexplained depletion of oxygen in the ISM. We further find clusters where a Mg atom is bound to the MgSiO3 monomer core. These species can be considered as the simplest initial step in monomer-initiated nucleation, indicating that small ionized pyroxenic clusters could also assist in the reformation of larger silicate dust grains in the ISM.
dc.format.extent6 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec729826
dc.identifier.issn2472-3452
dc.identifier.urihttps://hdl.handle.net/2445/193823
dc.language.isoeng
dc.publisherAmerican Chemical Society
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.1021/acsearthspacechem.2c00186
dc.relation.ispartofACS Earth and Space Chemistry, 2022, vol. 6, p. 2465-2470
dc.relation.urihttps://doi.org/10.1021/acsearthspacechem.2c00186
dc.rightscc by (c) Mariñoso Guiu, Joan et al., 2022
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/*
dc.sourceArticles publicats en revistes (Ciència dels Materials i Química Física)
dc.subject.classificationSilicats
dc.subject.classificationMatèria interstel·lar
dc.subject.classificationPols còsmica
dc.subject.classificationEspectroscòpia infraroja
dc.subject.otherSilicates
dc.subject.otherInterstellar matter
dc.subject.otherCosmic dust
dc.subject.otherInfrared spectroscopy
dc.titleCluster Beam Study of (MgSiO3)+-Based Monomeric Silicate Species and Their Interaction with Oxygen: Implications for Interstellar Astrochemistry
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
729826.pdf
Mida:
2.35 MB
Format:
Adobe Portable Document Format