Uncertainty-based Rejection Wrappers for Black-box Classifiers

dc.contributor.authorMena, José
dc.contributor.authorPujol Vila, Oriol
dc.contributor.authorVitrià i Marca, Jordi
dc.date.accessioned2020-07-14T07:18:54Z
dc.date.available2020-07-14T07:18:54Z
dc.date.issued2020-05-21
dc.date.updated2020-07-14T07:18:55Z
dc.description.abstractMachine Learning as a Service platform is a very sensible choice for practitioners that wantto incorporate machine learning to their products while reducing times and costs. However, to benefit theiradvantages, a method for assessing their performance when applied to a target application is needed. In thiswork, we present a robust uncertainty-based method for evaluating the performance of both probabilistic andcategorical classification black-box models, in particular APIs, that enriches the predictions obtained withan uncertainty score. This uncertainty score enables the detection of inputs with very confident but erroneouspredictions while protecting against out of distribution data points when deploying the model in a productivesetting. We validate the proposal in different natural language processing and computer vision scenarios.Moreover, taking advantage of the computed uncertainty score, we show that one can significantly increasethe robustness and performance of the resulting classification system by rejecting uncertain predictions
dc.format.extent26 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec700793
dc.identifier.issn2169-3536
dc.identifier.urihttps://hdl.handle.net/2445/168537
dc.language.isoeng
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.1109/ACCESS.2020.2996495
dc.relation.ispartofIEEE Access, 2020, vol. 8, p. 101721-101746
dc.relation.urihttps://doi.org/10.1109/ACCESS.2020.2996495
dc.rightscc-by (c) Mena, José et al., 2020
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es
dc.sourceArticles publicats en revistes (Matemàtiques i Informàtica)
dc.subject.classificationAprenentatge automàtic
dc.subject.classificationSistemes classificadors (Intel·ligència artificial)
dc.subject.classificationIntel·ligència artificial
dc.subject.otherMachine learning
dc.subject.otherLearning classifier systems
dc.subject.otherArtificial intelligence
dc.titleUncertainty-based Rejection Wrappers for Black-box Classifiers
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
700793.pdf
Mida:
4.48 MB
Format:
Adobe Portable Document Format