Unsupervised deep learning architectures for anomaly detection in brain MRI scans

dc.contributor.authorMalé, Jordi
dc.contributor.authorXirau, Víctor
dc.contributor.authorFortea, Juan
dc.contributor.authorHeuzé, Yann
dc.contributor.authorMartínez Abadías, Neus, 1978-
dc.contributor.authorSevillano, Xavier
dc.date.accessioned2025-03-04T15:24:09Z
dc.date.available2025-03-04T15:24:09Z
dc.date.issued2024
dc.description.abstractBrain imaging techniques, particularly magnetic resonance imaging (MRI), play a crucial role in understanding the neurocognitive phenotype and associated challenges of many neurological disorders, providing detailed insights into the structural alterations in the brain. Despite advancements, the links between cognitive performance and brain anatomy remain unclear. The complexity of analyzing brain MRI scans requires expertise and time, prompting the exploration of artificial intelligence for automated assistance. In this context, unsupervised deep learning techniques, particularly Transformers and Autoencoders, offer a solution by learning the distribution of healthy brain anatomy and detecting alterations in unseen scans. In this work, we evaluate several unsupervised models to reconstruct healthy brain scans and detect synthetic anomalies.ca
dc.format.extent4 p.
dc.format.mediumapplication/pdf
dc.identifier.urihttps://hdl.handle.net/2445/219443
dc.language.isoengca
dc.publisherIOS Pressca
dc.relation.isformatofReproducció del document publicat a: https://doi.org/ 10.3233/FAIA240415
dc.relation.ispartofCapítol del llibre: Alsinet, Teresa, Vilasís, Xavier , García, Daniel, Álvarez, Elena (eds.), Proceedings of the 26th International Conference of the Catalan Association for Artificial Intelligence, IOS Press, 2024, [ISBN 9781643685434], pp. 90-93
dc.relation.urihttps://doi.org/10.3233/FAIA240415
dc.rightscc by-nc (c) Malé, Jordi et al, 2024
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca
dc.rights.urihttp://creativecommons.org/licenses/by-nc/3.0/es/*
dc.sourceLlibres / Capítols de llibre (Biologia Evolutiva, Ecologia i Ciències Ambientals)
dc.subject.classificationIntel·ligència artificial
dc.subject.classificationEcoencefalografia
dc.subject.otherArtificial intelligence
dc.subject.otherUltrasonic encephalograph
dc.titleUnsupervised deep learning architectures for anomaly detection in brain MRI scansca
dc.typeinfo:eu-repo/semantics/bookPartca
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
FAIA-390-FAIA240415.pdf
Mida:
574.16 KB
Format:
Adobe Portable Document Format
Descripció: