Restricted Boltzmann Machines and their Information Geometry in Quantum Many-Body Problems

dc.contributor.advisorMoreno Cardoner, Maria
dc.contributor.authorEsteban Folch, Alex
dc.date.accessioned2024-10-04T14:13:34Z
dc.date.available2024-10-04T14:13:34Z
dc.date.issued2024-06
dc.descriptionTreballs Finals de Grau de Física, Facultat de Física, Universitat de Barcelona, Curs: 2024, Tutora: Maria Moreno Cardonerca
dc.description.abstractQuantum many-body problems face a scalability challenge, since the wave function scales exponentially with the number of bodies in the system. Fortunately, several machine learning approaches have been recently proposed to overcome this challenge. Specially promising are the Restricted Boltzmann Machines (RBMs), to turn the problem into a manageable computational form. Moreover, information geometry has been studied in RBMs, and the Fisher Matrix has shown to reveal relevant information about the system. Here, we create from scratch a RBM representation of the ground state for the transverse Ising model (short and long-range), and analyze the corresponding Fisher Matrix across different quantum phases, and its potential to signal the phase transitionca
dc.format.extent6 p.
dc.format.mimetypeapplication/pdf
dc.identifier.urihttps://hdl.handle.net/2445/215569
dc.language.isoengca
dc.rightscc-by-nc-nd (c) Esteban, 2024
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.sourceTreballs Finals de Grau (TFG) - Física
dc.subject.classificationProblema de molts cossoscat
dc.subject.classificationXarxes neuronals (Informàtica)cat
dc.subject.classificationTreballs de fi de graucat
dc.subject.otherMany-body problemeng
dc.subject.otherNeural networks (Computer science)eng
dc.subject.otherBachelor's theseseng
dc.titleRestricted Boltzmann Machines and their Information Geometry in Quantum Many-Body Problemseng
dc.typeinfo:eu-repo/semantics/bachelorThesisca

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
ESTEBAN FOLCH ALEX.pdf
Mida:
927.59 KB
Format:
Adobe Portable Document Format
Descripció: