Quantum Reservoir Computing for Hamiltonian Learning in Metal-Insulator Anderson Transitions

dc.contributor.advisorMujal Torreblanca, Pere
dc.contributor.advisorJuliá-Díaz, Bruno
dc.contributor.authorCortés Páez, Lucía
dc.date.accessioned2024-10-02T13:35:48Z
dc.date.available2024-10-02T13:35:48Z
dc.date.issued2024-06
dc.descriptionTreballs Finals de Grau de Física, Facultat de Física, Universitat de Barcelona, Curs: 2024, Tutors: Pere Mujal Torreblanca, Bruno Juliá Díazca
dc.description.abstractThis research investigates transport regimes in metal-insulator Anderson transition through Hamiltonian learning. Quantum reservoir computing is employed to estimate the stochasticity parameter in the Hamiltonian of the quasiperiodic kicked rotor, a model that displays Anderson transition in momentum space. The stochasticity parameter is key for classifying phase regimes, i.e., localized/insulator phase, delocalized/metalic phase, and critical phase, as well as qualitatively forecasting trajectory evolution. Thus, supervised machine learning that effectively maps input trajectories to their corresponding stochasticity parameter has been developed, highlighting the efficacy of quantum machine learning in analyzing quantum phenomenaca
dc.format.extent5 p.
dc.format.mimetypeapplication/pdf
dc.identifier.urihttps://hdl.handle.net/2445/215535
dc.language.isoengca
dc.rightscc-by-nc-nd (c) Cortés, 2024
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.sourceTreballs Finals de Grau (TFG) - Física
dc.subject.classificationOrdinadors quànticscat
dc.subject.classificationAprenentatge automàticcat
dc.subject.classificationTreballs de fi de graucat
dc.subject.otherQuantum computerseng
dc.subject.otherMachine learningeng
dc.subject.otherBachelor's theseseng
dc.titleQuantum Reservoir Computing for Hamiltonian Learning in Metal-Insulator Anderson Transitionseng
dc.typeinfo:eu-repo/semantics/bachelorThesisca

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
CORTÉS PÁEZ LUCÍA.pdf
Mida:
2.4 MB
Format:
Adobe Portable Document Format
Descripció: