A fully automatic method for vascular tortuosity feature extraction in the supra-aortic region: unraveling possibilities in stroke treatment planning

dc.contributor.authorCanals, Pere
dc.contributor.authorBalocco, Simone
dc.contributor.authorDíaz, Oliver
dc.contributor.authorLi, Jiahui
dc.contributor.authorGarcía-Tornel, Álvaro
dc.contributor.authorTomasello, Alejandro
dc.contributor.authorOlivé-Gadea, Marta
dc.contributor.authorRibó Jacobi, Marc
dc.date.accessioned2023-02-09T10:20:52Z
dc.date.issued2022-12-28
dc.date.updated2023-02-09T10:20:52Z
dc.description.abstractVascular tortuosity of supra-aortic vessels is widely considered one of the main reasons for failure and delays in endovascular treatment of large vessel occlusion in patients with acute ischemic stroke. Characterization of tortuosity is a challenging task due to the lack of objective, robust and effective analysis tools. We present a fully automatic method for arterial segmentation, vessel labelling and tortuosity feature extraction applied to the supra-aortic region. A sample of 566 computed tomography angiography scans from acute ischemic stroke patients (aged 74.8 ± 12.9, 51.0% females) were used for training, validation and testing of a segmentation module based on a U-Net architecture (162 cases) and a vessel labelling module powered by a graph U-Net (566 cases). Successively, 30 cases were processed for testing of a tortuosity feature extraction module. Measurements obtained through automatic processing were compared to manual annotations from two observers for a thorough validation of the method. The proposed feature extraction method presented similar performance to the inter-rater variability observed in the measurement of 33 geometrical and morphological features of the arterial anatomy in the supra-aortic region. This system will contribute to the development of more complex models to advance the treatment of stroke by adding immediate automation, objectivity, repeatability and robustness to the vascular tortuosity characterization of patients.
dc.format.extent11 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec728172
dc.identifier.issn0895-6111
dc.identifier.urihttps://hdl.handle.net/2445/193326
dc.language.isoeng
dc.publisherElsevier Ltd
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.1016/j.compmedimag.2022.102170
dc.relation.ispartofComputerized Medical Imaging and Graphics, 2022, vol. 104
dc.relation.urihttps://doi.org/10.1016/j.compmedimag.2022.102170
dc.rightscc-by-nc-nd (c) Pere Canals et al., 2022
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.sourceArticles publicats en revistes (Matemàtiques i Informàtica)
dc.subject.classificationMalalties vasculars
dc.subject.classificationMalalties coronàries
dc.subject.classificationAprenentatge automàtic
dc.subject.classificationIntel·ligència artificial en medicina
dc.subject.otherVascular diseases
dc.subject.otherCoronary diseases
dc.subject.otherMachine learning
dc.subject.otherMedical artificial intelligence
dc.titleA fully automatic method for vascular tortuosity feature extraction in the supra-aortic region: unraveling possibilities in stroke treatment planning
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
728172.pdf
Mida:
4.84 MB
Format:
Adobe Portable Document Format