Carregant...
Miniatura

Tipus de document

Part del llibre

Versió

Versió acceptada

Data de publicació

Tots els drets reservats

Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/205324

Computational Prediction of Trypanosoma cruzi Epitopes Toward the Generation of an Epitope-Based Vaccine Against Chagas Disease

Títol de la revista

Director/Tutor

ISSN de la revista

Títol del volum

Resum

Chagas disease, caused by the protozoan parasite Trypanosoma cruzi, is considered a Neglected Tropical Disease. Limited investment is assigned to its study and control, even though it is one of the most prevalent parasitic infections worldwide. An innovative vaccination strategy involving an epitope-based vaccine that displays multiple immune determinants originating from different antigens could counteract the high biological complexity of the parasite and lead to a wide and protective immune response. In this chapter, we describe a computational reverse vaccinology pipeline applied to identify the most promising peptide sequences from T. cruzi proteins, prioritizing evolutionary conserved sequences, to finally select a list of T and B cell epitope candidates to be further tested in an experimental setting. © 2023, The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature.

Matèries (anglès)

Citació

Citació

ROS LUCAS, Albert, RIOJA SOTO, David, GASCON, Joaquim, ALONSO PADILLA, Julio. Computational Prediction of Trypanosoma cruzi Epitopes Toward the Generation of an Epitope-Based Vaccine Against Chagas Disease. _Methods In Molecular Biology_. 2023. Vol. 2673, núm. 487-504. [consulta: 1 de febrer de 2026]. ISSN: 1064-3745. [Disponible a: https://hdl.handle.net/2445/205324]

Exportar metadades

JSON - METS

Compartir registre