Carregant...
Fitxers
Tipus de document
ArticleVersió
Versió acceptadaData de publicació
Tots els drets reservats
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/133486
Analyzing longitudinal data and use of the generalized linear model in health and social sciences
Títol de la revista
Director/Tutor
ISSN de la revista
Títol del volum
Recurs relacionat
Resum
In the health and social sciences, longitudinal data have often been analyzed without taking into account the dependence between observations of the same subject. Furthermore, consideration is rarely given to the fact that longitudinal data may come from a non-normal distribution. In addition to describing the aims and types of longitudinal designs this paper presents three approaches based on generalized estimating equations that do take into account the lack of independence in data, as well as the type of distribution. These approaches are the marginal model (population-average model), the random effects model (subject-specific model), and the transition model (Markov model or auto-correlation model). Finally, these models are applied to empirical data by means of specific procedures included in SAS, namely GENMOD, MIXED, and GLIMMIX.
Matèries
Matèries (anglès)
Citació
Citació
ARNAU GRAS, Jaume, BONO CABRÉ, Roser, BENDAYAN, Rebecca, BLANCA MENA, M. josé. Analyzing longitudinal data and use of the generalized linear model in health and social sciences. _Quality & Quantity_. 2016. Vol. 50, núm. 2, pàgs. 693-707. [consulta: 20 de gener de 2026]. ISSN: 0033-5177. [Disponible a: https://hdl.handle.net/2445/133486]