Q-learnings in RTs game's micro-management

dc.contributor.advisorCerquides Bueno, Jesús
dc.contributor.advisorPreuss, Mike
dc.contributor.authorPalacios Garzón, Ángel Camilo
dc.date.accessioned2015-10-16T08:23:19Z
dc.date.available2015-10-16T08:23:19Z
dc.date.issued2015-09-10
dc.descriptionTreballs Finals de Grau d'Enginyeria Informàtica, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2015, Director: Jesús Cerquides Buenoca
dc.description.abstractThe purpose of this Project is to implement the one-step Q-Learning algorithm and a similar version using linear function approximation in a combat scenario in the Real-Time Strategy game Starcraft: BroodwarTM. First, there is a brief description of Real-Time Strategy games, and particularly about Starcraft, and some of the work done in the field of Reinforcement Learning. After the introduction and previous work are covered, a description of the Reinforcement Learning problem in Real-Time Strategy games is shown. Then, the development of the Reinforcement Learning agents using Q-Learning and Approximate Q-Learning is explained. It is divided into three phases: the first phase consists of defining the task that the agents must solve as a Markov Decision Process and implementing the Reinforcement Learning agents. The second phase is the training period: the agents have to learn how to destroy the rival units and avoid being destroyed in a set of training maps. This will be done through exploration because the agents have no prior knowledge of the outcome of the available actions. The third and last phase is testing the agents’ knowledge acquired in the training period in a different set of maps, observing the results and finally comparing which agent has performed better. The expected behavior is that both Q-Learning agents will learn how to kite (attack and flee) in any combat scenario. Ultimately, this behavior could become the micro-management portion of a new Bot or could be added to an existing bot.ca
dc.format.extent31 p.
dc.format.mimetypeapplication/pdf
dc.identifier.urihttps://hdl.handle.net/2445/67303
dc.language.isoengca
dc.rightsmemòria: cc-by-nc-sa (c) Ángel Camilo Palacios Garzón, 2015
dc.rightscodi: GPL (c) Ángel Camilo Palacios Garzón, 2015
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca
dc.rights.urihttp://creativecommons.org/licenses/by-sa/3.0/es
dc.rights.urihttp://www.gnu.org/licenses/gpl-3.0.ca.html
dc.sourceTreballs Finals de Grau (TFG) - Enginyeria Informàtica
dc.subject.classificationAprenentatge automàticcat
dc.subject.classificationAprenentatge per reforçcat
dc.subject.classificationProgramaricat
dc.subject.classificationTreballs de fi de graucat
dc.subject.classificationDisseny de videojocsca
dc.subject.classificationAlgorismes computacionalsca
dc.subject.classificationAgents intel·ligents (Programes d'ordinador)ca
dc.subject.otherMachine learningeng
dc.subject.otherReinforcement learningeng
dc.subject.otherComputer softwareeng
dc.subject.otherBachelor's theseseng
dc.subject.otherVideo games designeng
dc.subject.otherComputer algorithmseng
dc.subject.otherIntelligent agents (Computer software)eng
dc.titleQ-learnings in RTs game's micro-managementca
dc.typeinfo:eu-repo/semantics/bachelorThesisca

Fitxers

Paquet original

Mostrant 1 - 2 de 2
Carregant...
Miniatura
Nom:
codi_font.zip
Mida:
17.7 MB
Format:
ZIP file
Descripció:
Codi font
Carregant...
Miniatura
Nom:
memoria.pdf
Mida:
2.31 MB
Format:
Adobe Portable Document Format
Descripció:
Memòria