CO2 mitigation accounting for Thermal Energy Storage (TES) case studies

dc.contributor.authorCabeza, Luisa F.
dc.contributor.authorMiró, Laia
dc.contributor.authorOró, Eduard
dc.contributor.authorGracia, Alvaro de
dc.contributor.authorMartin, Viktoria
dc.contributor.authorKrönauer, Andreas
dc.contributor.authorRathgeber, Christoph
dc.contributor.authorFarid, Mohammed M.
dc.contributor.authorPaksoy, Halime O.
dc.contributor.authorMartínez López, Mònica
dc.contributor.authorFernández Renna, Ana Inés
dc.date.accessioned2019-02-19T15:15:34Z
dc.date.available2019-02-19T15:15:34Z
dc.date.issued2015-06-23
dc.date.updated2019-02-19T15:15:34Z
dc.description.abstractAccording to the IPCC, societies can respond to climate changes by adapting to its impacts and by mitigation, that is, by reducing GHG emissions. No single technology can provide all of the mitigation potential in any sector, but many technologies have been acknowledged in being able to contribute to such potential. Among the technologies that can contribute in such potential, Thermal Energy Storage (TES) is not included explicitly, but implicitly as part of technologies such as energy supply, buildings, and industry. To enable a more detailed assessment of the CO2 mitigation potential of TES across many sectors, the group Annex 25 ''Surplus heat management using advanced TES for CO2 mitigation'' of the Energy Conservation through Energy Storage Implementing Agreement (ECES IA) of the International Energy Agency (AEI) present in this article the CO2 mitigation potential of different case studies with integrated TES. This potential is shown using operational and embodied CO2 parameters. Results are difficult to compare since TES is always designed in relation to its application, and each technology impacts the energy system as a whole to different extents. The applications analyzed for operational CO2 are refrigeration, solar power plants, mobile heat storage in industrial waste heat recovery, passive systems in buildings, ATES for a supermarket, greenhouse applications, and dishwasher with zeolite in Germany. The paper shows that the reason for mitigation is different in each application, from energy savings to larger solar share or lowering energy consumption from appliances. The mitigation potential dues to integrated TES is quantified in kg/MW h energy produced or heat delivered. Embodied CO2 in two TES case studies is presented, buildings and solar power plants.
dc.format.extent13 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec653548
dc.identifier.issn0306-2619
dc.identifier.urihttps://hdl.handle.net/2445/128467
dc.language.isoeng
dc.publisherElsevier B.V.
dc.relation.isformatofVersió postprint del document publicat a: https://doi.org/10.1016/j.apenergy.2015.05.121
dc.relation.ispartofApplied Energy, 2015, vol. 155, p. 365-377
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/FP7/610692/EU//INNOSTORAGE
dc.relation.urihttps://doi.org/10.1016/j.apenergy.2015.05.121
dc.rightscc-by-nc-nd (c) Elsevier B.V., 2015
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es
dc.sourceArticles publicats en revistes (Ciència dels Materials i Química Física)
dc.subject.classificationDiòxid de carboni
dc.subject.classificationEmmagatzematge d'energia tèrmica
dc.subject.classificationCanvi climàtic
dc.subject.otherCarbon dioxide
dc.subject.otherHeat storage
dc.subject.otherClimatic change
dc.titleCO2 mitigation accounting for Thermal Energy Storage (TES) case studies
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/acceptedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
653548.pdf
Mida:
1.26 MB
Format:
Adobe Portable Document Format