Winning solutions and post-challenge analyses of the ChaLearn AutoDL challenge 2019

dc.contributor.authorLiu, Zhengying
dc.contributor.authorPavao, Adrien
dc.contributor.authorXu, Zhen
dc.contributor.authorEscalera Guerrero, Sergio
dc.contributor.authorFerreira, Fabio
dc.contributor.authorGuyon, Isabelle
dc.contributor.authorHong, Sirui
dc.contributor.authorHutter, Frank
dc.contributor.authorJi, Rongrong
dc.contributor.authorJacques Junior, Julio C. S.
dc.contributor.authorLi, Ge
dc.contributor.authorLindauer, Marius
dc.contributor.authorLuo, Zhipeng
dc.contributor.authorMadadi, Meysam
dc.contributor.authorNierhoff, Thomas
dc.contributor.authorNiu, Kangning
dc.contributor.authorPan, Chunguang
dc.contributor.authorStoll, Danny
dc.contributor.authorTreguer, Sebastien
dc.contributor.authorWang, Jin
dc.contributor.authorWang, Peng
dc.contributor.authorWu, Chenglin
dc.contributor.authorXiong, Youcheng
dc.contributor.authorZela, Arbër
dc.contributor.authorZhang, Yang
dc.date.accessioned2022-11-10T08:58:18Z
dc.date.available2022-11-10T08:58:18Z
dc.date.issued2021-09-01
dc.date.updated2022-11-10T08:58:18Z
dc.description.abstractThis paper reports the results and post-challenge analyses of ChaLearn's AutoDL challenge series, which helped sorting out a profusion of AutoML solutions for Deep Learning (DL) that had been introduced in a variety of settings, but lacked fair comparisons. All input data modalities (time series, images, videos, text, tabular) were formatted as tensors and all tasks were multi-label classification problems. Code submissions were executed on hidden tasks, with limited time and computational resources, pushing solutions that get results quickly. In this setting, DL methods dominated, though popular Neural Architecture Search (NAS) was impractical. Solutions relied on fine-tuned pre-trained networks, with architectures matching data modality. Post-challenge tests did not reveal improvements beyond the imposed time limit. While no component is particularly original or novel, a high level modular organization emerged featuring a "meta-learner", "data ingestor", "model selector", "model/learner", and "evaluator". This modularity enabled ablation studies, which revealed the importance of (off-platform) meta-learning, ensembling, and efficient data management. Experiments on heterogeneous module combinations further confirm the (local) optimality of the winning solutions. Our challenge legacy includes an ever-lasting benchmark ( http://autodl.chalearn.org), the open-sourced code of the winners, and a free "AutoDL self-service."
dc.format.extent18 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec711649
dc.identifier.issn0162-8828
dc.identifier.urihttps://hdl.handle.net/2445/190660
dc.language.isoeng
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)
dc.relation.isformatofVersió postprint del document publicat a: https://doi.org/10.1109/TPAMI.2021.3075372
dc.relation.ispartofIEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, vol. 43, num. 9, p. 3108-3125
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/H2020/716721/EU//BeyondBlackbox
dc.relation.urihttps://doi.org/10.1109/TPAMI.2021.3075372
dc.rights(c) Institute of Electrical and Electronics Engineers (IEEE), 2021
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.sourceArticles publicats en revistes (Matemàtiques i Informàtica)
dc.subject.classificationAprenentatge automàtic
dc.subject.classificationSistemes classificadors (Intel·ligència artificial)
dc.subject.classificationXarxes neuronals (Informàtica)
dc.subject.otherMachine learning
dc.subject.otherLearning classifier systems
dc.subject.otherNeural networks (Computer science)
dc.titleWinning solutions and post-challenge analyses of the ChaLearn AutoDL challenge 2019
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/acceptedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
711649.pdf
Mida:
1.95 MB
Format:
Adobe Portable Document Format