Collection of Partition Coefficients in Hexadecyltrimethylammonium Bromide, Sodium Cholate, and Lithium Perfluorooctanesulfonate Micellar Solutions: Experimental Determination and Computational Predictions

dc.contributor.authorSaranjam, Leila
dc.contributor.authorNedyalkova, Miroslava
dc.contributor.authorFuguet i Jordà, Elisabet
dc.contributor.authorSimeonov, Vasil
dc.contributor.authorMas i Pujadas, Francesc
dc.contributor.authorMadurga Díez, Sergio
dc.date.accessioned2023-09-15T16:36:03Z
dc.date.available2023-09-15T16:36:03Z
dc.date.issued2023-07-28
dc.date.updated2023-09-15T16:36:03Z
dc.description.abstractThis study focuses on determining the partition coefficients (logP) of a diverse set of 63 molecules in three distinct micellar systems: hexadecyltrimethylammonium bromide (HTAB), sodium cholate (SC), and lithium perfluorooctanesulfonate (LPFOS). The experimental log p values were obtained through micellar electrokinetic chromatography (MEKC) experiments, conducted under controlled pH conditions. Then, Quantum Mechanics (QM) and machine learning approaches are proposed for the prediction of the partition coefficients in these three micellar systems. In the applied QM approach, the experimentally obtained partition coefficients were correlated with the calculated values for the case of the 15 solvent mixtures. Using Density Function Theory (DFT) with the B3LYP functional, we calculated the solvation free energies of 63 molecules in these 16 solvents. The combined data from the experimental partition coefficients in the three micellar formulations showed that the 1-propanol/water combination demonstrated the best agreement with the experimental partition coefficients for the SC and HTAB micelles. Moreover, we employed the SVM approach and k-means clustering based on the generation of the chemical descriptor space. The analysis revealed distinct partitioning patterns associated with specific characteristic features within each identified class. These results indicate the utility of the combined techniques when we want an efficient and quicker model for predicting partition coefficients in diverse micelles.
dc.format.extent16 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec738291
dc.identifier.issn1420-3049
dc.identifier.urihttps://hdl.handle.net/2445/201918
dc.language.isoeng
dc.publisherMDPI
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.3390/molecules28155729
dc.relation.ispartofMolecules, 2023, vol. 28, num. 15, p. 1-16
dc.relation.urihttps://doi.org/10.3390/molecules28155729
dc.rightscc-by (c) Saranjam, Leila et al., 2023
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.sourceArticles publicats en revistes (Ciència dels Materials i Química Física)
dc.subject.classificationTeoria del funcional de densitat
dc.subject.classificationLiti
dc.subject.classificationMicel·les
dc.subject.otherDensity functionals
dc.subject.otherLithium
dc.subject.otherMicelles
dc.titleCollection of Partition Coefficients in Hexadecyltrimethylammonium Bromide, Sodium Cholate, and Lithium Perfluorooctanesulfonate Micellar Solutions: Experimental Determination and Computational Predictions
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
738291.pdf
Mida:
717.91 KB
Format:
Adobe Portable Document Format