Machine Learning-Driven Discovery of Key Descriptors for CO2 Activation over Two-Dimensional Transition Metal Carbides and Nitrides

dc.contributor.authorAbraham, B. Moses
dc.contributor.authorPiqué, Oriol
dc.contributor.authorKhan, Mohd Aamir
dc.contributor.authorViñes Solana, Francesc
dc.contributor.authorIllas i Riera, Francesc
dc.contributor.authorSingh, Jayant K.
dc.date.accessioned2025-01-20T15:40:10Z
dc.date.available2025-01-20T15:40:10Z
dc.date.issued2023-06-19
dc.date.updated2025-01-20T15:40:10Z
dc.description.abstractFusing high-throughput quantum mechanical screening techniques with modern artificial intelligence strategies is among the most fundamental ─yet revolutionary─ science activities, capable of opening new horizons in catalyst discovery. Here, we apply this strategy to the process of finding appropriate key descriptors for CO2 activation over two-dimensional transition metal (TM) carbides/nitrides (MXenes). Various machine learning (ML) models are developed to screen over 114 pure and defective MXenes, where the random forest regressor (RFR) ML scheme exhibits the best predictive performance for the CO2 adsorption energy, with a mean absolute error ± standard deviation of 0.16 ± 0.01 and 0.42 ± 0.06 eV for training and test data sets, respectively. Feature importance analysis revealed d-band center (εd), surface metal electronegativity (χM), and valence electron number of metal atoms (MV) as key descriptors for CO2 activation. These findings furnish a fundamental basis for designing novel MXene-based catalysts through the prediction of potential indicators for CO2 activation and their posterior usage.
dc.format.extent10 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec738219
dc.identifier.issn1944-8244
dc.identifier.urihttps://hdl.handle.net/2445/217696
dc.language.isoeng
dc.publisherAmerican Chemical Society
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.1021/acsami.3c02821
dc.relation.ispartofACS Applied Materials & Interfaces, 2023, vol. 15, num.25, p. 30117-30126
dc.relation.urihttps://doi.org/10.1021/acsami.3c02821
dc.rightscc-by (c) Abraham, B. Moses et al., 2023
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/*
dc.sourceArticles publicats en revistes (Ciència dels Materials i Química Física)
dc.subject.classificationTeoria del funcional de densitat
dc.subject.classificationDiòxid de carboni
dc.subject.classificationMetalls de transició
dc.subject.otherDensity functionals
dc.subject.otherCarbon dioxide
dc.subject.otherTransition metals
dc.titleMachine Learning-Driven Discovery of Key Descriptors for CO2 Activation over Two-Dimensional Transition Metal Carbides and Nitrides
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
826781.pdf
Mida:
7.69 MB
Format:
Adobe Portable Document Format