Carregant...
Miniatura

Tipus de document

Treball de fi de màster

Data de publicació

Llicència de publicació

cc-by-nc-nd (c) Dafni Tziakouri, 2024
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/215427

Education with language models: analyzing uncertainty estimation techniques

Títol de la revista

ISSN de la revista

Títol del volum

Resum

The widespread adoption of Large Language Models (LLMs) underscores the significance of recognizing both their capabilities and constraints. This study aims to delve into understanding the functioning of Large Language Models (LLMs), with a specific focus on GPT models (Sai, 2023), such as GPT-3.5 (Koubaa, 2023) and GPT-4 (OpenAI, 2023). Additionally, it will demonstrate the development of a Chatbot tailored for educational purposes, employing a diverse array of tools. Through systematic examination, this study seeks to determine whether the utilization of LLMs and GenAI can be deemed trustworthy for educational purposes. Moreover, this research will address the challenge of uncertainty estimation, particularly in black-box models, highlighting the need for reliable methods to evaluate model confidence. The investigation will incorporate various experiments de- signed to evaluate the stability and accuracy of these models. Through comprehensive experimentation, this study seeks to contribute to a deeper understanding of LLMs’ behavior, their potential applications in education, and the challenges associated with uncertainty estimation in black-box models. The corresponding notebooks and datasets for this thesis, can be found in the following GitHub repository, https://github.com/DaphneDjiakouri/MasterThesis.

Descripció

Treballs finals del Màster de Fonaments de Ciència de Dades, Facultat de matemàtiques, Universitat de Barcelona. Curs: 2023-2024. Tutor: Jordi Vitrià i Marca

Citació

Citació

TZIAKOURI, Dafni. Education with language models: analyzing uncertainty estimation techniques. [consulta: 6 de desembre de 2025]. [Disponible a: https://hdl.handle.net/2445/215427]

Exportar metadades

JSON - METS

Compartir registre