High-Throughput Prediction of the Impact of Genetic Variability on Drug Sensitivity and Resistance Patterns for Clinically Relevant Epidermal Growth Factor Receptor Mutations from Atomistic Simulations

dc.contributor.authorSuriñach, Aristarc
dc.contributor.authorHospital Gasch, Adam
dc.contributor.authorWestermaier, Yvonne
dc.contributor.authorJordà Bordoy, Luis
dc.contributor.authorOrozco Ruiz, Sergi
dc.contributor.authorBeltrán, Daniel
dc.contributor.authorColizzi, Francesco
dc.contributor.authorAndrio, Pau
dc.contributor.authorSoliva, Robert
dc.contributor.authorMunicoy, Martí
dc.contributor.authorGelpi Buchaca, Josep Lluís
dc.contributor.authorOrozco López, Modesto
dc.date.accessioned2023-01-11T13:45:35Z
dc.date.available2023-12-28T06:10:21Z
dc.date.issued2022-12-28
dc.date.updated2023-01-10T15:57:20Z
dc.description.abstractMutations in the kinase domain of the epidermal growth factor receptor (EGFR) can be drivers of cancer and also trigger drug resistance in patients receiving chemotherapy treatment based on kinase inhibitors. A priori knowledge of the impact of EGFR variants on drug sensitivity would help to optimize chemotherapy and design new drugs that are effective against resistant variants before they emerge in clinical trials. To this end, we explored a variety of in silico methods, from sequence-based to "state-of-the-art" atomistic simulations. We did not find any sequence signal that can provide clues on when a drug-related mutation appears or the impact of such mutations on drug activity. Low-level simulation methods provide limited qualitative information on regions where mutations are likely to cause alterations in drug activity, and they can predict around 70% of the impact of mutations on drug efficiency. High-level simulations based on nonequilibrium alchemical free energy calculations show predictive power. The integration of these "state-of-the-art" methods into a workflow implementing an interface for parallel distribution of the calculations allows its automatic and high-throughput use, even for researchers with moderate experience in molecular simulations.ca
dc.format.extent13 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idimarina6573154
dc.identifier.issn1549-9596
dc.identifier.pmid36576351
dc.identifier.urihttps://hdl.handle.net/2445/192069
dc.language.isoengca
dc.publisherAmerican Chemical Societyca
dc.relation.isformatofVersió postprint del document publicat a: https://doi.org/10.1021/acs.jcim.2c01344
dc.relation.ispartofJournal of Chemical Information and Modeling, 2023, Vol. 63, num. 1, p. 321-334
dc.relation.urihttps://doi.org/10.1021/acs.jcim.2c01344
dc.rights(c) American Chemical Society, 2022
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.sourceArticles publicats en revistes (Bioquímica i Biomedicina Molecular)
dc.subject.classificationResistència als medicaments
dc.subject.classificationCàncer
dc.subject.classificationQuimioteràpia
dc.subject.classificationGenètica
dc.subject.otherDrug resistance
dc.subject.otherCancer
dc.subject.otherChemotherapy
dc.subject.otherGenetics
dc.titleHigh-Throughput Prediction of the Impact of Genetic Variability on Drug Sensitivity and Resistance Patterns for Clinically Relevant Epidermal Growth Factor Receptor Mutations from Atomistic Simulationsca
dc.typeinfo:eu-repo/semantics/articleca
dc.typeinfo:eu-repo/semantics/acceptedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
High-Throughput Prediction of the Impact of Genetic Variability on Drug Sensitivity and Resistance Patterns for Clinically Relevant Epidermal Growth Factor Receptor Mutations from Atomistic Simulations.pdf
Mida:
9.97 MB
Format:
Adobe Portable Document Format