Carregant...
Miniatura

Tipus de document

Article

Versió

Versió acceptada

Data de publicació

Tots els drets reservats

Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/192861

The representation type of determinantal varieties

Títol de la revista

Director/Tutor

ISSN de la revista

Títol del volum

Resum

This work is entirely devoted to construct huge families of indecomposable arithmetically Cohen-Macaulay (resp. Ulrich) sheaves $\mathcal{E}$ of arbitrary high rank on a general standard (resp. linear) determinantal scheme $X \subset \mathbb{P}^n$ of codimension $c \geq 1, n-c \geq 1$ and defined by the maximal minors of a $t \times(t+c-1)$ homogeneous matrix $\mathcal{A}$. The sheaves $\mathcal{E}$ are constructed as iterated extensions of sheaves of lower rank. As applications: (1) we prove that any general standard determinantal scheme $X \subset \mathbb{P}^n$ is of wild representation type provided the degrees of the entries of the matrix $\mathcal{A}$ satisfy some weak numerical assumptions; and (2) we determine values of $t, n$ and $n-c$ for which a linear standard determinantal scheme $X \subset \mathbb{P}^n$ is of wild representation type with respect to the much more restrictive category of its indecomposable Ulrich sheaves, i.e. $X$ is of Ulrich wild representation type.

Citació

Citació

KLEPPE, Jan o., MIRÓ-ROIG, Rosa m. (rosa maria). The representation type of determinantal varieties. _Algebras And Representation Theory_. 2017. Vol. 20, núm. 4, pàgs. 1029-1059. [consulta: 21 de gener de 2026]. ISSN: 1386-923X. [Disponible a: https://hdl.handle.net/2445/192861]

Exportar metadades

JSON - METS

Compartir registre