Carregant...
Miniatura

Tipus de document

Article

Versió

Versió acceptada

Data de publicació

Llicència de publicació

cc-by-nc-nd (c) Elsevier B.V., 2021
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/192644

Flow map parameterization methods for invariant tori in Hamiltonian systems

Títol de la revista

Director/Tutor

ISSN de la revista

Títol del volum

Resum

The goal of this paper is to present a methodology for the computation of invariant tori in Hamiltonian systems combining flow map methods, parameterization methods, and symplectic geometry. While flow map methods reduce the dimension of the tori to be computed by one (avoiding Poincaré maps), parameterization methods reduce the cost of a single step of the derived Newton-like method to be proportional to the cost of a FFT. Symplectic properties lead to some magic cancellations that make the methods work. The multiple shooting version of the methods are applied to the computation of invariant tori and their invariant bundles around librational equilibrium points of the Restricted Three Body Problem. The invariant bundles are the first order approximations of the corresponding invariant manifolds, commonly known as the whiskers, which are very important in the dynamical organization and have important applications in space mission design.

Citació

Citació

HARO, Àlex, MONDELO GONZÁLEZ, José maría. Flow map parameterization methods for invariant tori in Hamiltonian systems. _Communications In Nonlinear Science And Numerical Simulation_. 2021. Vol. 101. [consulta: 3 de febrer de 2026]. ISSN: 1007-5704. [Disponible a: https://hdl.handle.net/2445/192644]

Exportar metadades

JSON - METS

Compartir registre