El Dipòsit Digital ha actualitzat el programari. Contacteu amb dipositdigital@ub.edu per informar de qualsevol incidència.

 

The polynomial method over varieties

dc.contributor.advisorSombra, Martín
dc.contributor.authorRovira Cisterna, Sergi
dc.date.accessioned2020-05-07T08:43:48Z
dc.date.available2020-05-07T08:43:48Z
dc.date.issued2019-09-11
dc.descriptionTreballs finals del Màster en Matemàtica Avançada, Facultat de matemàtiques, Universitat de Barcelona, Any: 2019, Director: Martín Sombraca
dc.description.abstract[en] In 2010, Guth and Katz introduced the polynomial partitioning theorem as a tool in incidence geometry and in additive combinatorics. This allowed the application of results from algebraic geometry (mainly on intersection theory and on the topology of real algebraic varieties) to the solution of long standing problems, including the celebrated Erdős distinct distances problem. Recently, Walsh has extended the polynomial partitioning method to an arbitrary subvariety. This result opens the way to the application of this method to control the point-hypersurface incidences and, more generally, of variety-variety incidences, in spaces of arbitrary dimension. This final project consists in studying Walsh’s paper, to explain its contents and explore its applications to t his kind of incidence problems.ca
dc.format.extent75 p.
dc.format.mimetypeapplication/pdf
dc.identifier.urihttps://hdl.handle.net/2445/159040
dc.language.isoengca
dc.rightscc-by-sa (c) Sergi Rovira Cisterna, 2019
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca
dc.rights.urihttp://creativecommons.org/licenses/by-sa/3.0/es/*
dc.sourceMàster Oficial - Matemàtica Avançada
dc.subject.classificationVarietats algebraiquescat
dc.subject.classificationGeometria algebraicacat
dc.subject.classificationTreballs de fi de màstercat
dc.subject.otherAlgebraic varietieseng
dc.subject.otherAlgebraic geometryeng
dc.subject.otherMaster's theseseng
dc.titleThe polynomial method over varietiesca
dc.typeinfo:eu-repo/semantics/masterThesisca

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
159040.pdf
Mida:
468.48 KB
Format:
Adobe Portable Document Format
Descripció:
Memòria