Clustering de pacientes en MIMIC-III para modelos de predicción de mortalidad hospitalaria y duración de la estancia en UCI

dc.contributor.authorFont Gouveia, Arthur
dc.date.accessioned2023-04-19T10:06:44Z
dc.date.available2023-04-19T10:06:44Z
dc.date.issued2022-06-12
dc.descriptionTreballs Finals de Grau d'Enginyeria Informàtica, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2022, Director: Laura Igual Muñozca
dc.description.abstract[en] Healthcare data availability is growing recently due to the digitalization of clinical records. Therefore, this large amount of data is being used by researchers to improve decision-making process, resources allocation and to address several issues. The aim of this Bachelor’s thesis is to investigate if unsupervised clustering of patients could be helpful to improve predictive models performance for mortality and length of stay in the Intensive Care Unit. The data used belongs to the open source database called MIMIC-III (Medical Information Mart for Intensive Care III). Results shows that clustering prior to predictive models training improved accuracy for the most significant cluster.ca
dc.format.extent50 p.
dc.format.mimetypeapplication/pdf
dc.identifier.urihttps://hdl.handle.net/2445/196961
dc.language.isospaca
dc.rightsmemòria: cc-nc-nd (c) Arthur Font Gouveia, 2022
dc.rightscodi: GPL (c) Arthur Font Gouveia, 2022
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca
dc.rights.urihttp://www.gnu.org/licenses/gpl-3.0.ca.html
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.sourceTreballs Finals de Grau (TFG) - Enginyeria Informàtica
dc.subject.classificationHistòries clíniquesca
dc.subject.classificationPresa de decisions (Estadística)ca
dc.subject.classificationProgramarica
dc.subject.classificationTreballs de fi de grauca
dc.subject.classificationUnitats de cures intensivesca
dc.subject.classificationAprenentatge automàticca
dc.subject.otherMedical recordsen
dc.subject.otherStatistical decisionen
dc.subject.otherComputer softwareen
dc.subject.otherIntensive care unitsen
dc.subject.otherMachine learningen
dc.subject.otherBachelor's thesesen
dc.titleClustering de pacientes en MIMIC-III para modelos de predicción de mortalidad hospitalaria y duración de la estancia en UCIca
dc.typeinfo:eu-repo/semantics/bachelorThesisca

Fitxers

Paquet original

Mostrant 1 - 2 de 2
Carregant...
Miniatura
Nom:
tfg_font_gouveia_arthur.pdf
Mida:
4 MB
Format:
Adobe Portable Document Format
Descripció:
Memòria
Carregant...
Miniatura
Nom:
codi_font.zip
Mida:
55.95 MB
Format:
ZIP file
Descripció:
Codi font