Micropatterning of single endothelial cell shape reveals a tight coupling between nuclear volume in G1 and proliferation

dc.contributor.authorRoca-Cusachs Soulere, Perecat
dc.contributor.authorAlcaraz Casademunt, Jordicat
dc.contributor.authorSunyer, Raimoncat
dc.contributor.authorSamitier i Martí, Josepcat
dc.contributor.authorFarré Ventura, Ramoncat
dc.contributor.authorNavajas Navarro, Danielcat
dc.date.accessioned2012-05-16T08:41:06Z
dc.date.available2012-05-16T08:41:06Z
dc.date.issued2008
dc.description.abstractShape-dependent local differentials in cell proliferation are considered to be a major driving mechanism of structuring processes in vivo, such as embryogenesis, wound healing, and angiogenesis. However, the specific biophysical signaling by which changes in cell shape contribute to cell cycle regulation remains poorly understood. Here, we describe our study of the roles of nuclear volume and cytoskeletal mechanics in mediating shape control of proliferation in single endothelial cells. Micropatterned adhesive islands were used to independently control cell spreading and elongation. We show that, irrespective of elongation, nuclear volume and apparent chromatin decondensation of cells in G1 systematically increased with cell spreading and highly correlated with DNA synthesis (percent of cells in the S phase). In contrast, cell elongation dramatically affected the organization of the actin cytoskeleton, markedly reduced both cytoskeletal stiffness (measured dorsally with atomic force microscopy) and contractility (measured ventrally with traction microscopy), and increased mechanical anisotropy, without affecting either DNA synthesis or nuclear volume. Our results reveal that the nuclear volume in G1 is predictive of the proliferative status of single endothelial cells within a population, whereas cell stiffness and contractility are not. These findings show that the effects of cell mechanics in shape control of proliferation are far more complex than a linear or straightforward relationship. Our data are consistent with a mechanism by which spreading of cells in G1 partially enhances proliferation by inducing nuclear swelling and decreasing chromatin condensation, thereby rendering DNA more accessible to the replication machinery.eng
dc.format.extent12 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec567099
dc.identifier.issn0006-3495
dc.identifier.pmid18326659
dc.identifier.urihttps://hdl.handle.net/2445/25802
dc.language.isoengeng
dc.publisherBiophysical Society
dc.relation.isformatofReproducció del document publicat a: http://dx.doi.org/10.1529/biophysj.107.116863
dc.relation.ispartofBiophysical Journal, 2008, vol. 94, núm. 12, p. 4984-4995
dc.relation.urihttp://dx.doi.org/10.1529/biophysj.107.116863
dc.rights(c) The Biophysical Society, 2008
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca
dc.sourceArticles publicats en revistes (Ciències Fisiològiques)
dc.subject.classificationCèl·lules epitelialscat
dc.subject.classificationRegulació cel·lularcat
dc.subject.classificationCicle cel·lularcat
dc.subject.otherEpithelial cellseng
dc.subject.otherCellular control mechanismseng
dc.subject.otherCell cycleeng
dc.titleMicropatterning of single endothelial cell shape reveals a tight coupling between nuclear volume in G1 and proliferationeng
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
567099.pdf
Mida:
728.11 KB
Format:
Adobe Portable Document Format