Lattice quantum chromodynamics at large isospin density

dc.contributor.authorAbbott, Ryan
dc.contributor.authorDetmold, William
dc.contributor.authorRomero-López, Fernando
dc.contributor.authorDavoudi, Zohreh
dc.contributor.authorIlla, Marc
dc.contributor.authorParreño García, Assumpta
dc.contributor.authorPerry, Robert J.
dc.contributor.authorShanahan, Phiala E.
dc.contributor.authorWagman, Michael L.
dc.date.accessioned2024-06-17T17:15:37Z
dc.date.available2024-06-17T17:15:37Z
dc.date.issued2023-12-18
dc.date.updated2024-06-17T17:15:42Z
dc.description.abstractWe present an algorithm to compute correlation functions for systems with the quantum numbers of many identical mesons from lattice quantum chromodynamics (QCD). The algorithm is numerically stable and allows for the computation of 𝑛-pion correlation functions for 𝑛∈{1,…,𝑁} using a single 𝑁×𝑁 matrix decomposition, improving on previous algorithms. We apply the algorithm to calculations of correlation functions with up to 6144 charged pions using two ensembles of gauge field configurations generated with quark masses corresponding to a pion mass 𝑚𝜋=170  MeV and spacetime volumes of (4.43×8.8)  fm4 and (5.83×11.6)  fm4. We also discuss statistical techniques for the analysis of such systems, in which the correlation functions vary over many orders of magnitude. In particular, we observe that the many-pion correlation functions are well-approximated by log-normal distributions, allowing the extraction of the energies of these systems. Using these energies, the large-isospin-density, zero-baryon-density region of the QCD phase diagram is explored. A peak is observed in the energy density at an isospin chemical potential 𝜇𝐼∼1.5⁢𝑚𝜋, signaling the transition into a Bose-Einstein condensed phase. The isentropic speed of sound, 𝑐𝑠, in the medium is seen to exceed the ideal-gas (conformal) limit (𝑐2 𝑠≤1/3) over a wide range of chemical potential before falling towards the asymptotic expectation at 𝜇𝐼∼15⁢𝑚𝜋. These, and other thermodynamic observables, indicate that the isospin chemical potential must be large for the system to be well described by an ideal gas or perturbative QCD.
dc.format.extent16 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec741495
dc.identifier.issn2470-0010
dc.identifier.urihttps://hdl.handle.net/2445/213312
dc.language.isoeng
dc.publisherAmerican Physical Society
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.1103/PhysRevD.108.114506
dc.relation.ispartofPhysical Review D, 2023, vol. 108, p. 1-16
dc.relation.urihttps://doi.org/10.1103/PhysRevD.108.114506
dc.rights(c) American Physical Society, 2023
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.sourceArticles publicats en revistes (Física Quàntica i Astrofísica)
dc.subject.classificationCromodinàmica quàntica
dc.subject.classificationMesons (Física nuclear)
dc.subject.otherQuantum chromodynamics
dc.subject.otherMesons (Nuclear physics)
dc.titleLattice quantum chromodynamics at large isospin density
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
839129.pdf
Mida:
2.45 MB
Format:
Adobe Portable Document Format