Rotation Bounds for Hölder Continuous Homeomorphisms with Integrable Distortion

dc.contributor.authorClop, Albert
dc.contributor.authorHitruhin, Lauri
dc.contributor.authorSengupta, Banhirup
dc.date.accessioned2025-01-14T09:11:10Z
dc.date.available2025-01-14T09:11:10Z
dc.date.issued2022-05-25
dc.date.updated2025-01-14T09:11:10Z
dc.description.abstractWe obtain sharp rotation bounds for the subclass of homeomorphisms $f: \mathbb{C} \rightarrow \mathbb{C}$ of finite distortion which have distortion function in $L_{l o c}^p, p>1$, and for which a Hölder continuous inverse is available. The interest in this class is partially motivated by examples arising from fluid mechanics. Our rotation bounds hereby presented improve the existing ones, for which the Hölder continuity is not assumed. We also present examples proving sharpness.
dc.format.extent21 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec751529
dc.identifier.issn1050-6926
dc.identifier.urihttps://hdl.handle.net/2445/217437
dc.language.isoeng
dc.publisherSpringer Verlag
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.1007/s12220-022-00950-y
dc.relation.ispartofJournal of Geometric Analysis, 2022, vol. 32, num.8
dc.relation.urihttps://doi.org/10.1007/s12220-022-00950-y
dc.rightscc by (c) Albert Clop et al., 2022
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/*
dc.sourceArticles publicats en revistes (Matemàtiques i Informàtica)
dc.subject.classificationTeoria geomètrica de funcions
dc.subject.classificationFuncions de variables complexes
dc.subject.classificationDesigualtats (Matemàtica)
dc.subject.otherGeometric function theory
dc.subject.otherFunctions of complex variables
dc.subject.otherInequalities (Mathematics)
dc.titleRotation Bounds for Hölder Continuous Homeomorphisms with Integrable Distortion
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
870011.pdf
Mida:
324.15 KB
Format:
Adobe Portable Document Format