The Tuberculosis Drug Candidate SQ109 and Its Analogs Have Multistage Activity against Plasmodium falciparum
| dc.contributor.author | Watson, Savannah | |
| dc.contributor.author | Van der Watt, Mariette | |
| dc.contributor.author | Theron, Anjo | |
| dc.contributor.author | Reader, Janette | |
| dc.contributor.author | Tshabalala, Sizwe | |
| dc.contributor.author | Erlank, Erica | |
| dc.contributor.author | Koekemoer, Lizette L. | |
| dc.contributor.author | Naude, Mariska | |
| dc.contributor.author | Stampolaki, Marianna | |
| dc.contributor.author | Adewole, Feyisola | |
| dc.contributor.author | Sadowska, Katie | |
| dc.contributor.author | Pérez Lozano, Pilar | |
| dc.contributor.author | Turcu, Andreea L. | |
| dc.contributor.author | Vázquez Cruz, Santiago | |
| dc.contributor.author | Ko, Jihee | |
| dc.contributor.author | Mazurek, Ben | |
| dc.contributor.author | Singh, Davinder | |
| dc.contributor.author | Malwal, Satish R. | |
| dc.contributor.author | Njoroge, Mathew | |
| dc.contributor.author | Chibale, Kelly | |
| dc.contributor.author | Onajole, Oluseye K . | |
| dc.contributor.author | Kolocouris, Antonios | |
| dc.contributor.author | Oldfield, Eric | |
| dc.contributor.author | Birkholtz, Lyn-Marié | |
| dc.contributor.author | Gras Miravet, Dunia | |
| dc.contributor.author | Niell, Manel | |
| dc.date.accessioned | 2025-02-19T13:30:00Z | |
| dc.date.available | 2025-02-19T13:30:00Z | |
| dc.date.issued | 2024-09-13 | |
| dc.date.updated | 2025-02-19T13:30:00Z | |
| dc.description.abstract | <p>Influenza A viruses can cause a serious future threat due to frequent mutations. Amantadine and rimantadine inhibit influenza A M2 wild-type (WT) viruses by binding and blocking M2 WT channel-mediated proton current. The resistant to the drugs amantadine and rimantadine influenza A viruses bearing the S31N mutant in the M2 proton channel can be inhibited by <span style="color:rgb( 33 , 33 , 33 )">amantadine – aryl conjugates, in which amantadine and an aryl group are linked through a methylene, which block M2 S31N channel</span>-mediated proton current<span style="color:rgb( 33 , 33 , 33 )">. </span>However, the M2 amantadine / rimantadine resistant viruses bearing one of the four mutations L26F, V27A, A30T, G34E in residues that line the M2 protein pore pose an additional concern for public health.</p><p> </p><p>Here, we designed 33 compounds based on the structure of three previously published and potent amantadine-aryl conjugates against M2 S31N virus, by replacing amantadine with 16 amantadine variants. The compounds were tested against M2 WT and the five M2 amantadine-resistant viruses aiming at identifying inhibitors against multiple M2 mutant – amantadine resistant viruses.</p><p> </p><p>We identified 16 compounds that inhibited <em>in vitro</em> two influenza A viruses with M2 WT or L26F channels. Additionally, compounds <strong>21</strong> or<strong> 32 </strong>or<strong> 33</strong>, which are conjugates of the rimantadine variant with CMe<sub>2</sub> (instead of CHMe in rimantadine) or the diamantylamine or the 4-(1-adamantyl)benzenamine with the 2-hydroxy-4-methoxyphenyl aryl group, were <em>in vitro</em> inhibitors against three influenza A viruses with M2 WT or L26F or S31N, while compound <strong>21</strong> inhibited<em> </em>also <em>in vitro</em> the M2 G34E virus and <strong>32</strong> inhibited also <em>in vitro</em> the M2 A30T virus. For these compounds we performed <span style="color:black">a preliminary </span><a href="https://en.wikipedia.org/wiki/Drug_metabolism" target="_blank" rel="nofollow noopener noreferrer">drug metabolism</a> and <a href="https://en.wikipedia.org/wiki/Pharmacokinetics" target="_blank" rel="nofollow noopener noreferrer">pharmacokinetics</a> study. Also, using electrophysiology, we showed that compound <strong>21 </strong>was<strong> </strong>an efficient blocker of the M2 WT and M2 L26F channels, compound <strong>32 </strong>blocked efficiently the M2 WT channel and compound <strong>33</strong> blocked the M2 WT, L26F and V27A channels.</p><p> </p> | |
| dc.format.extent | 10 p. | |
| dc.format.mimetype | application/pdf | |
| dc.identifier.idgrec | 752485 | |
| dc.identifier.issn | 2373-8227 | |
| dc.identifier.uri | https://hdl.handle.net/2445/218980 | |
| dc.language.iso | eng | |
| dc.publisher | American Chemical Society | |
| dc.relation.isformatof | Reproducció del document publicat a: https://doi.org/doi: 10.1021/acsinfecdis.4c00461 | |
| dc.relation.ispartof | ACS Infectious Diseases, 2024, vol. 10, num.9, p. 3358-3367 | |
| dc.relation.uri | https://doi.org/doi: 10.1021/acsinfecdis.4c00461 | |
| dc.rights | cc by (c) Savannah Watson, et al., 2024 | |
| dc.rights.accessRights | info:eu-repo/semantics/openAccess | |
| dc.rights.uri | http://creativecommons.org/licenses/by/3.0/es/ | * |
| dc.source | Articles publicats en revistes (Farmacologia, Toxicologia i Química Terapèutica) | |
| dc.subject.classification | Malària | |
| dc.subject.classification | Tuberculosi | |
| dc.subject.other | Malaria | |
| dc.subject.other | Tuberculosis | |
| dc.title | The Tuberculosis Drug Candidate SQ109 and Its Analogs Have Multistage Activity against Plasmodium falciparum | |
| dc.type | info:eu-repo/semantics/article | |
| dc.type | info:eu-repo/semantics/publishedVersion |
Fitxers
Paquet original
1 - 1 de 1