Non-symmetric stable operators: regularity theory and integration by parts

dc.contributor.authorDipierro, Serena
dc.contributor.authorRos, Xavier
dc.contributor.authorSerra, Joaquim
dc.contributor.authorValdinoci, Enrico
dc.date.accessioned2023-02-24T08:41:04Z
dc.date.available2024-06-04T05:10:11Z
dc.date.issued2022-06-04
dc.date.updated2023-02-24T08:41:04Z
dc.description.abstractWe study solutions to $L u=f$ in $\Omega \subset \mathbb{R}^n$, being $L$ the generator of any, possibly nonsymmetric, stable Lévy process. On the one hand, we study the regularity of solutions to $L u=f$ in $\Omega, u=0$ in $\Omega^c$, in $C^{1, \alpha}$ domains $\Omega$. We show that solutions $u$ satisfy $u / d^\gamma \in C^{\varepsilon_0}(\bar{\Omega})$, where $d$ is the distance to $\partial \Omega$, and $\gamma=\gamma(L, \nu)$ is an explicit exponent that depends on the Fourier symbol of operator $L$ and on the unit normal $v$ to the boundary $\partial \Omega$. On the other hand, we establish new integration by_parts identities in half spaces for such operators. These new identities extend previous ones for the fractional Laplacian, but the non-symmetric setting presents some new interesting features. Finally, we generalize the integration by parts identities in half spaces to the case of bounded $C^{1, \alpha}$ domains. We do it via a new efficient approximation argument, which exploits the Hölder regularity of $u / d^\gamma$. This new approximation argument is interesting, we believe, even in the case of the fractional Laplacian.
dc.format.extent68 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec719155
dc.identifier.issn0001-8708
dc.identifier.urihttps://hdl.handle.net/2445/194122
dc.language.isoeng
dc.publisherElsevier B.V.
dc.relation.isformatofVersió postprint del document publicat a: https://doi.org/10.1016/j.aim.2022.108321
dc.relation.ispartofAdvances in Mathematics, 2022, vol. 401
dc.relation.urihttps://doi.org/10.1016/j.aim.2022.108321
dc.rightscc-by-nc-nd (c) Elsevier B.V., 2022
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.sourceArticles publicats en revistes (Matemàtiques i Informàtica)
dc.subject.classificationEquacions diferencials
dc.subject.classificationProcessos estocàstics
dc.subject.classificationOperadors pseudodiferencials
dc.subject.otherDifferential equations
dc.subject.otherStochastic processes
dc.subject.otherPseudodifferential operator
dc.titleNon-symmetric stable operators: regularity theory and integration by parts
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/acceptedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
719155.pdf
Mida:
720.14 KB
Format:
Adobe Portable Document Format