Non-symmetric stable operators: regularity theory and integration by parts
| dc.contributor.author | Dipierro, Serena | |
| dc.contributor.author | Ros, Xavier | |
| dc.contributor.author | Serra, Joaquim | |
| dc.contributor.author | Valdinoci, Enrico | |
| dc.date.accessioned | 2023-02-24T08:41:04Z | |
| dc.date.available | 2024-06-04T05:10:11Z | |
| dc.date.issued | 2022-06-04 | |
| dc.date.updated | 2023-02-24T08:41:04Z | |
| dc.description.abstract | We study solutions to $L u=f$ in $\Omega \subset \mathbb{R}^n$, being $L$ the generator of any, possibly nonsymmetric, stable Lévy process. On the one hand, we study the regularity of solutions to $L u=f$ in $\Omega, u=0$ in $\Omega^c$, in $C^{1, \alpha}$ domains $\Omega$. We show that solutions $u$ satisfy $u / d^\gamma \in C^{\varepsilon_0}(\bar{\Omega})$, where $d$ is the distance to $\partial \Omega$, and $\gamma=\gamma(L, \nu)$ is an explicit exponent that depends on the Fourier symbol of operator $L$ and on the unit normal $v$ to the boundary $\partial \Omega$. On the other hand, we establish new integration by_parts identities in half spaces for such operators. These new identities extend previous ones for the fractional Laplacian, but the non-symmetric setting presents some new interesting features. Finally, we generalize the integration by parts identities in half spaces to the case of bounded $C^{1, \alpha}$ domains. We do it via a new efficient approximation argument, which exploits the Hölder regularity of $u / d^\gamma$. This new approximation argument is interesting, we believe, even in the case of the fractional Laplacian. | |
| dc.format.extent | 68 p. | |
| dc.format.mimetype | application/pdf | |
| dc.identifier.idgrec | 719155 | |
| dc.identifier.issn | 0001-8708 | |
| dc.identifier.uri | https://hdl.handle.net/2445/194122 | |
| dc.language.iso | eng | |
| dc.publisher | Elsevier B.V. | |
| dc.relation.isformatof | Versió postprint del document publicat a: https://doi.org/10.1016/j.aim.2022.108321 | |
| dc.relation.ispartof | Advances in Mathematics, 2022, vol. 401 | |
| dc.relation.uri | https://doi.org/10.1016/j.aim.2022.108321 | |
| dc.rights | cc-by-nc-nd (c) Elsevier B.V., 2022 | |
| dc.rights.accessRights | info:eu-repo/semantics/openAccess | |
| dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0/ | |
| dc.source | Articles publicats en revistes (Matemàtiques i Informàtica) | |
| dc.subject.classification | Equacions diferencials | |
| dc.subject.classification | Processos estocàstics | |
| dc.subject.classification | Operadors pseudodiferencials | |
| dc.subject.other | Differential equations | |
| dc.subject.other | Stochastic processes | |
| dc.subject.other | Pseudodifferential operator | |
| dc.title | Non-symmetric stable operators: regularity theory and integration by parts | |
| dc.type | info:eu-repo/semantics/article | |
| dc.type | info:eu-repo/semantics/acceptedVersion |
Fitxers
Paquet original
1 - 1 de 1