Clinicians’ Guide to Artificial Intelligence in Colon Capsule Endoscopy—Technology Made Simple

dc.contributor.authorLei, Ian I.
dc.contributor.authorNia, Gohar J.
dc.contributor.authorWhite, Elizabeth
dc.contributor.authorWenzek, Hagen
dc.contributor.authorSeguí Mesquida, Santi
dc.contributor.authorWatson, Angus
dc.contributor.authorKoulaouzidis, Anastasios
dc.contributor.authorArasaradnam, Ramesh P.
dc.date.accessioned2024-02-23T10:32:39Z
dc.date.available2024-02-23T10:32:39Z
dc.date.issued2023-03-08
dc.date.updated2024-02-23T10:32:39Z
dc.description.abstractArtificial intelligence (AI) applications have become widely popular across the healthcare ecosystem. Colon capsule endoscopy (CCE) was adopted in the NHS England pilot project following the recent COVID pandemic’s impact. It demonstrated its capability to relieve the national backlog in endoscopy. As a result, AI-assisted colon capsule video analysis has become gastroenterology’s most active research area. However, with rapid AI advances, mastering these complex machine learning concepts remains challenging for healthcare professionals. This forms a barrier for clinicians to take on this new technology and embrace the new era of big data. This paper aims to bridge the knowledge gap between the current CCE system and the future, fully integrated AI system. The primary focus is on simplifying the technical terms and concepts in machine learning. This will hopefully address the general “fear of the unknown in AI” by helping healthcare professionals understand the basic principle of machine learning in capsule endoscopy and apply this knowledge in their future interactions and adaptation to AI technology. It also summarises the evidence of AI in CCE and its impact on diagnostic pathways. Finally, it discusses the unintended consequences of using AI, ethical challenges, potential flaws, and bias within clinical settings.
dc.format.extent18 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec742782
dc.identifier.issn2075-4418
dc.identifier.urihttps://hdl.handle.net/2445/208004
dc.language.isoeng
dc.publisherMDPI
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.3390/diagnostics13061038
dc.relation.ispartofDiagnostics, 2023, vol. 13, num.6
dc.relation.urihttps://doi.org/10.3390/diagnostics13061038
dc.rightscc-by (c) Ian I. Lei et al., 2023
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.sourceArticles publicats en revistes (Matemàtiques i Informàtica)
dc.subject.classificationCàpsula endoscòpica
dc.subject.classificationCòlon
dc.subject.classificationIntel·ligència artificial en medicina
dc.subject.otherCapsule endoscopy
dc.subject.otherColon
dc.subject.otherMedical artificial intelligence
dc.titleClinicians’ Guide to Artificial Intelligence in Colon Capsule Endoscopy—Technology Made Simple
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
843113.pdf
Mida:
3.11 MB
Format:
Adobe Portable Document Format