On the rank and the convergence rate toward the Sato-Tate measure

dc.contributor.authorFité Naya, Francesc
dc.contributor.authorGuitart Morales, Xavier
dc.date.accessioned2023-02-10T19:23:39Z
dc.date.available2023-02-10T19:23:39Z
dc.date.issued2019-07
dc.date.updated2023-02-10T19:23:40Z
dc.description.abstractAnstract. Let $A$ be an abelian variety defined over a number field and let $G$ denote its SatoTate group. Under the assumption of certain standard conjectures on $L$-functions attached to the irreducible representations of $G$, we study the convergence rate of any virtual selfdual character of $G$. We find that this convergence rate is dictated by several arithmetic invariants of $A$, such as its rank or its Sato-Tate group $G$. The results are consonant with some previous experimental observations, and we also provide additional numerical evidence consistent with them. The techniques that we use were introduced by Sarnak, in order to explain the bias in the sign of the Frobenius traces of an elliptic curve without complex multiplication defined over $\mathbb{Q}$. We show that the same methods can be adapted to study the convergence rate of the characters of its Sato-Tate group, and that they can also be employed in the more general case of abelian varieties over number fields. A key tool in our analysis is the existence of limiting distributions for automorphic $L$-functions, which is due to Akbary, Ng, and Shahabi.
dc.format.extent38 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec675059
dc.identifier.issn1073-7928
dc.identifier.urihttps://hdl.handle.net/2445/193451
dc.language.isoeng
dc.publisherOxford University Press
dc.relation.isformatofVersió postprint del document publicat a: https://doi.org/10.1093/imrn/rnx234
dc.relation.ispartofInternational Mathematics Research Notices, 2019, vol. 2019, num. 13, p. 4081-4118
dc.relation.urihttps://doi.org/10.1093/imrn/rnx234
dc.rights(c) Fité Naya, Francesc et al., 2019
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.sourceArticles publicats en revistes (Matemàtiques i Informàtica)
dc.subject.classificationTeoria de nombres
dc.subject.classificationGeometria algebraica aritmètica
dc.subject.classificationVarietats abelianes
dc.subject.classificationGrups discontinus
dc.subject.otherNumber theory
dc.subject.otherArithmetical algebraic geometry
dc.subject.otherAbelian varieties
dc.subject.otherDiscontinuous groups
dc.titleOn the rank and the convergence rate toward the Sato-Tate measure
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/acceptedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
675059.pdf
Mida:
1.06 MB
Format:
Adobe Portable Document Format