Carregant...
Fitxers
Tipus de document
ArticleVersió
Versió acceptadaData de publicació
Tots els drets reservats
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/130195
Fatou components and singularities of meromorphic functions
Títol de la revista
Director/Tutor
ISSN de la revista
Títol del volum
Recurs relacionat
Resum
We prove several results concerning the relative position of points in the postsingular set $P(f)$ of a meromorphic map $f$ and the boundary of a Baker domain or the successive iterates of a wandering component. For Baker domains we answer a question of Mihaljevi\'c-Brandt and Rempe-Gillen. For wandering domains we show that if the iterates $U_n$ of such a domain have uniformly bounded diameter, then there exists a sequence of postsingular values $p_n$ such that $\dist(p_n, U_n)\to 0$ as $n\to \infty$. We also prove that if $U_n \cap P(f)=\emptyset$ and the postsingular set of $f$ lies at a positive distance from the Julia set (in $\C$), then the sequence of iterates of any wandering domain must contain arbitrarily large disks. This allows to exclude the existence of wandering domains for some meromorphic maps with infinitely many poles and unbounded set of singular values.
Citació
Citació
BARANSKI, Krzysztof, FAGELLA RABIONET, Núria, JARQUE I RIBERA, Xavier, KARPINSKA, Boguslawa. Fatou components and singularities of meromorphic functions. _Proceedings of the Royal Society of Edinburgh: Section A Mathematics_. 2020. Vol. 150, núm. 2, pàgs. 633-654. [consulta: 24 de gener de 2026]. ISSN: 0308-2105. [Disponible a: https://hdl.handle.net/2445/130195]