Subspace Procrustes Analysis

dc.contributor.authorPerez-Sala, Xavier
dc.contributor.authorDe la Torre, Fernando
dc.contributor.authorIgual Muñoz, Laura
dc.contributor.authorEscalera Guerrero, Sergio
dc.contributor.authorAngulo, Cecilio
dc.date.accessioned2020-05-21T21:00:13Z
dc.date.available2020-05-21T21:00:13Z
dc.date.issued2016-09-15
dc.date.updated2020-05-21T21:00:13Z
dc.description.abstractProcrustes Analysis (PA) has been a popular technique to align and build 2-D statistical models of shapes. Given a set of 2-D shapes PA is applied to remove rigid transformations. Then, a non-rigid 2-D model is computed by modeling (e.g., PCA) the residual. Although PA has been widely used, it has several limitations for modeling 2-D shapes: occluded landmarks and missing data can result in local minima solutions, and there is no guarantee that the 2-D shapes provide a uniform sampling of the 3-D space of rotations for the object. To address previous issues, this paper proposes Subspace PA (SPA). Given several instances of a 3-D object, SPA computes the mean and a 2-D subspace that can simultaneously model all rigid and non-rigid deformations of the 3-D object. We propose a discrete (DSPA) and continuous (CSPA) formulation for SPA, assuming that 3-D samples of an object are provided. DSPA extends the traditional PA, and produces unbiased 2-D models by uniformly sampling different views of the 3-D object. CSPA provides a continuous approach to uniformly sample the space of 3-D rotations, being more efficient in space and time. Experiments using SPA to learn 2-D models of bodies from motion capture data illustrate the benefits of our approach.
dc.format.extent17 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec665575
dc.identifier.issn0920-5691
dc.identifier.urihttps://hdl.handle.net/2445/161944
dc.language.isoeng
dc.publisherSpringer Verlag
dc.relation.isformatofVersió postprint del document publicat a: https://doi.org/10.1007/s11263-016-0938-x
dc.relation.ispartofInternational Journal of Computer Vision, 2016, vol. 121, num. 3, p. 1-17
dc.relation.urihttps://doi.org/10.1007/s11263-016-0938-x
dc.rights(c) Springer Verlag, 2016
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.sourceArticles publicats en revistes (Matemàtiques i Informàtica)
dc.subject.classificationEstadística matemàtica
dc.subject.otherMathematical statistics
dc.titleSubspace Procrustes Analysis
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/acceptedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
665575.pdf
Mida:
1.62 MB
Format:
Adobe Portable Document Format