Subspace Procrustes Analysis
| dc.contributor.author | Perez-Sala, Xavier | |
| dc.contributor.author | De la Torre, Fernando | |
| dc.contributor.author | Igual Muñoz, Laura | |
| dc.contributor.author | Escalera Guerrero, Sergio | |
| dc.contributor.author | Angulo, Cecilio | |
| dc.date.accessioned | 2020-05-21T21:00:13Z | |
| dc.date.available | 2020-05-21T21:00:13Z | |
| dc.date.issued | 2016-09-15 | |
| dc.date.updated | 2020-05-21T21:00:13Z | |
| dc.description.abstract | Procrustes Analysis (PA) has been a popular technique to align and build 2-D statistical models of shapes. Given a set of 2-D shapes PA is applied to remove rigid transformations. Then, a non-rigid 2-D model is computed by modeling (e.g., PCA) the residual. Although PA has been widely used, it has several limitations for modeling 2-D shapes: occluded landmarks and missing data can result in local minima solutions, and there is no guarantee that the 2-D shapes provide a uniform sampling of the 3-D space of rotations for the object. To address previous issues, this paper proposes Subspace PA (SPA). Given several instances of a 3-D object, SPA computes the mean and a 2-D subspace that can simultaneously model all rigid and non-rigid deformations of the 3-D object. We propose a discrete (DSPA) and continuous (CSPA) formulation for SPA, assuming that 3-D samples of an object are provided. DSPA extends the traditional PA, and produces unbiased 2-D models by uniformly sampling different views of the 3-D object. CSPA provides a continuous approach to uniformly sample the space of 3-D rotations, being more efficient in space and time. Experiments using SPA to learn 2-D models of bodies from motion capture data illustrate the benefits of our approach. | |
| dc.format.extent | 17 p. | |
| dc.format.mimetype | application/pdf | |
| dc.identifier.idgrec | 665575 | |
| dc.identifier.issn | 0920-5691 | |
| dc.identifier.uri | https://hdl.handle.net/2445/161944 | |
| dc.language.iso | eng | |
| dc.publisher | Springer Verlag | |
| dc.relation.isformatof | Versió postprint del document publicat a: https://doi.org/10.1007/s11263-016-0938-x | |
| dc.relation.ispartof | International Journal of Computer Vision, 2016, vol. 121, num. 3, p. 1-17 | |
| dc.relation.uri | https://doi.org/10.1007/s11263-016-0938-x | |
| dc.rights | (c) Springer Verlag, 2016 | |
| dc.rights.accessRights | info:eu-repo/semantics/openAccess | |
| dc.source | Articles publicats en revistes (Matemàtiques i Informàtica) | |
| dc.subject.classification | Estadística matemàtica | |
| dc.subject.other | Mathematical statistics | |
| dc.title | Subspace Procrustes Analysis | |
| dc.type | info:eu-repo/semantics/article | |
| dc.type | info:eu-repo/semantics/acceptedVersion |
Fitxers
Paquet original
1 - 1 de 1