Carregant...
Miniatura

Tipus de document

Article

Versió

Versió acceptada

Data de publicació

Tots els drets reservats

Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/193498

A fractional Michael-Simon Sobolev inequality on convex hypersurfaces

Títol de la revista

Director/Tutor

ISSN de la revista

Títol del volum

Resum

The classical Michael-Simon and Allard inequality is a Sobolev inequality for functions defined on a submanifold of Euclidean space. It is governed by a universal constant independent of the manifold, thanks to an additional $L^p$ term on the righthand side which is weighted by the mean curvature of the underlying manifold. We prove here a fractional version of this inequality on hypersurfaces of Euclidean space that are boundaries of convex sets. It involves the Gagliardo seminorm of the function, as well as its $L^p$ norm weighted by the fractional mean curvature of the hypersurface. As an application, we establish a new upper bound for the maximal time of existence in the smooth fractional mean curvature flow of a convex set. The bound depends on the perimeter of the initial set instead of on its diameter.

Citació

Citació

CABRÉ, Xavier, COZZI, Matteo, CSATÓ, Gyula. A fractional Michael-Simon Sobolev inequality on convex hypersurfaces. _Annales de l'Institut Henri Poincare-Analyse non Lineaire_. 2022. [consulta: 21 de gener de 2026]. ISSN: 0294-1449. [Disponible a: https://hdl.handle.net/2445/193498]

Exportar metadades

JSON - METS

Compartir registre