Muckenhoupt type weights and Berezin formulas for Bergman spaces
| dc.contributor.author | Cascante, Ma. Carme (Maria Carme) | |
| dc.contributor.author | Fàbrega Casamitjana, Joan | |
| dc.contributor.author | Pascuas Tijero, Daniel | |
| dc.date.accessioned | 2022-03-14T11:24:23Z | |
| dc.date.available | 2022-03-14T11:24:23Z | |
| dc.date.issued | 2021-12 | |
| dc.date.updated | 2022-03-14T11:24:23Z | |
| dc.description.abstract | By means of Muckenhoupt type conditions, we characterize the weights $\omega$ on $\C$ such that the Bergman projection of $F^{2,\ell}_{\alpha}=H(\C)\cap L^2(\C,e^{-\frac{\alpha}2|z|^{2\ell}})$, $\alpha>0$, $\ell>1$, is bounded on $L^p(\C,e^{-\frac{\alpha p}2|z|^{2\ell}}\omega(z))$, for $1<p<\infty$. We also obtain explicit representation integral formulas for functions in the weighted Bergman spaces $A^p(\omega)=H(\C)\cap L^p(\omega)$. Finally, we check the validity of the so called Sarason conjecture about the boundedness of products of certain Toeplitz operators on the spaces $F^{p,\ell}_\alpha=H(\C)\cap L^p(\C,e^{-\frac{\alpha p}2|z|^{2\ell}})$. | |
| dc.format.mimetype | application/pdf | |
| dc.identifier.idgrec | 713206 | |
| dc.identifier.issn | 0022-247X | |
| dc.identifier.uri | https://hdl.handle.net/2445/184095 | |
| dc.language.iso | eng | |
| dc.publisher | Elsevier | |
| dc.relation.isformatof | Reproducció del document publicat a: https://doi.org/10.1016/j.jmaa.2021.125481 | |
| dc.relation.ispartof | Journal of Mathematical Analysis and Applications, 2021, vol. 504, p. 125481 | |
| dc.relation.uri | https://doi.org/10.1016/j.jmaa.2021.125481 | |
| dc.rights | cc-by-nc-nd (c) Cascante, C et al., 2021 | |
| dc.rights.accessRights | info:eu-repo/semantics/openAccess | |
| dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0/ | |
| dc.source | Articles publicats en revistes (Matemàtiques i Informàtica) | |
| dc.subject.classification | Representacions integrals | |
| dc.subject.classification | Nuclis de Bergman | |
| dc.subject.classification | Operadors de Toeplitz | |
| dc.subject.other | Integral representations | |
| dc.subject.other | Bergman kernel functions | |
| dc.subject.other | Toeplitz operators | |
| dc.title | Muckenhoupt type weights and Berezin formulas for Bergman spaces | |
| dc.type | info:eu-repo/semantics/article | |
| dc.type | info:eu-repo/semantics/publishedVersion |
Fitxers
Paquet original
1 - 1 de 1