Muckenhoupt type weights and Berezin formulas for Bergman spaces

dc.contributor.authorCascante, Ma. Carme (Maria Carme)
dc.contributor.authorFàbrega Casamitjana, Joan
dc.contributor.authorPascuas Tijero, Daniel
dc.date.accessioned2022-03-14T11:24:23Z
dc.date.available2022-03-14T11:24:23Z
dc.date.issued2021-12
dc.date.updated2022-03-14T11:24:23Z
dc.description.abstractBy means of Muckenhoupt type conditions, we characterize the weights $\omega$ on $\C$ such that the Bergman projection of $F^{2,\ell}_{\alpha}=H(\C)\cap L^2(\C,e^{-\frac{\alpha}2|z|^{2\ell}})$, $\alpha>0$, $\ell>1$, is bounded on $L^p(\C,e^{-\frac{\alpha p}2|z|^{2\ell}}\omega(z))$, for $1<p<\infty$. We also obtain explicit representation integral formulas for functions in the weighted Bergman spaces $A^p(\omega)=H(\C)\cap L^p(\omega)$. Finally, we check the validity of the so called Sarason conjecture about the boundedness of products of certain Toeplitz operators on the spaces $F^{p,\ell}_\alpha=H(\C)\cap L^p(\C,e^{-\frac{\alpha p}2|z|^{2\ell}})$.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec713206
dc.identifier.issn0022-247X
dc.identifier.urihttps://hdl.handle.net/2445/184095
dc.language.isoeng
dc.publisherElsevier
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.1016/j.jmaa.2021.125481
dc.relation.ispartofJournal of Mathematical Analysis and Applications, 2021, vol. 504, p. 125481
dc.relation.urihttps://doi.org/10.1016/j.jmaa.2021.125481
dc.rightscc-by-nc-nd (c) Cascante, C et al., 2021
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.sourceArticles publicats en revistes (Matemàtiques i Informàtica)
dc.subject.classificationRepresentacions integrals
dc.subject.classificationNuclis de Bergman
dc.subject.classificationOperadors de Toeplitz
dc.subject.otherIntegral representations
dc.subject.otherBergman kernel functions
dc.subject.otherToeplitz operators
dc.titleMuckenhoupt type weights and Berezin formulas for Bergman spaces
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
713206.pdf
Mida:
538.29 KB
Format:
Adobe Portable Document Format