A Comparative Study of the Life Cycle Inventory of Thermally Sprayed WC-12Co Coatings

dc.contributor.authorRúa Ramirez, Edwin
dc.contributor.authorSilvello, A. (Alessio)
dc.contributor.authorTorres Diaz, Edwin
dc.contributor.authorVaz, Rodolpho Fernando
dc.contributor.authorGarcía Cano, Irene
dc.date.accessioned2025-04-24T10:41:37Z
dc.date.available2025-04-24T10:41:37Z
dc.date.issued2024-04-01
dc.date.updated2025-04-24T10:41:37Z
dc.description.abstractIn this research, a life cycle inventory (LCI) is developed for tungsten carbide–cobalt (WC-Co) coatings deposited via atmospheric plasma spray (APS), high-velocity oxy-fuel (HVOF), and cold gas spray (CGS) techniques. For the APS process, a mixture of Ar/H2 was used, while the HVOF process was fueled by H2. The carrier gas for CGS was N2. This study aims to determine and quantify the inputs (consumption of inputs and materials) and outputs (emissions to air, soil, water, and waste generation) that could be used in the life cycle analysis (LCA) of these processes. The dataset produced will allow users to estimate the environmental impacts of these processes using WC-Co feedstock powder. To obtain a complete and detailed LCI, measurements of electrical energy, gas, WC-CO powder, and alumina powder consumption were performed (the use of alumina was for sandblasting). Furthermore, emissions like carbon dioxide (CO2), carbon monoxide (CO), and noise were also measured. This practice allowed us to determine the input/output process quantities. For the first time, it was possible to obtain LCI data for the APS, HVOF, and CGS deposition processes using WC-12Co as a feedstock powder, allowing access to the LCI data to a broader audience. Comparisons were made between APS, HVOF, and CGS processes in terms of consumption and emissions. It was determined that the APS process consumes more electrical energy and that its deposition efficiency is higher than the other processes, while the HVOF process consumes a large amount of H2, which makes the process costlier. CGS has comparatively low electricity consumption, high N2 consumption, and low deposition efficiency. The APS, HVOF, and CGS processes analyzed in this study do not emit CO, and CO2 emissions are negligible.
dc.format.extent1 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec749797
dc.identifier.issn2075-4701
dc.identifier.urihttps://hdl.handle.net/2445/220573
dc.language.isoeng
dc.publisherMDPI
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.3390/met14040431
dc.relation.ispartofMetals, 2024, vol. 14, num.4
dc.relation.urihttps://doi.org/10.3390/met14040431
dc.rightscc-by (c) Rúa Ramirez, E. et al., 2024
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.sourceArticles publicats en revistes (Ciència dels Materials i Química Física)
dc.subject.classificationMetalls de transició
dc.subject.classificationTungstè
dc.subject.classificationCarburs
dc.subject.otherTransition metals
dc.subject.otherTungsten
dc.subject.otherCarbides
dc.titleA Comparative Study of the Life Cycle Inventory of Thermally Sprayed WC-12Co Coatings
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
864484.pdf
Mida:
2.4 MB
Format:
Adobe Portable Document Format