Simulating Quantum Computers with Tensor Networks

dc.contributor.advisorAcín dal Maschio, Antonio
dc.contributor.advisorKottmann, Korbinian
dc.contributor.advisorStornati, Paolo
dc.contributor.authorRecio Armengol, Erik
dc.date.accessioned2022-09-27T13:36:16Z
dc.date.available2022-09-27T13:36:16Z
dc.date.issued2022-09
dc.descriptionMàster Oficial de Ciència i Tecnologia Quàntiques / Quantum Science and Technology, Facultat de Física, Universitat de Barcelona. Curs: 2021-2022. Tutor: Antonio Acín, co-tutors: Korbinian Kottmann, Paolo Stornatica
dc.description.abstractWe are setting up a pipeline to simulate variational quantum algorithms for relevant system sizes. Most simulators only allow for a few qubits. With tensor networks we can access much larger systems. One of the most promising algorithms is the variational quantum eigensolver, where a parametrized circuit is optimized to prepare an approximation of the ground state. We are investigating the reverse process of disentangling a ground state to a product state variationally, so we can study the necessary circuit depth needed in order to achieve the disentanglingca
dc.format.extent28 p.
dc.format.mimetypeapplication/pdf
dc.identifier.urihttps://hdl.handle.net/2445/189366
dc.language.isoengca
dc.rightscc-by-nc-nd (c) Recio, 2022
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.sourceMàster Oficial - Ciència i Tecnologia Quàntiques / Quantum Science and Technology
dc.subject.classificationAlgorisme quàntic
dc.subject.classificationXarxes tensorials
dc.subject.classificationSolucionador quàntic variacional
dc.subject.classificationTreballs de fi de màster
dc.subject.otherQuantum algorithm
dc.subject.otherTensor network
dc.subject.otherVariational quantum eigensolver
dc.subject.otherMaster's theses
dc.titleSimulating Quantum Computers with Tensor Networkseng
dc.typeinfo:eu-repo/semantics/masterThesisca

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
TFM Erik Recio.pdf
Mida:
3.51 MB
Format:
Adobe Portable Document Format
Descripció: