The Riemann hypothesis: The great pending mathematical challenge

dc.contributor.authorBayer i Isant, Pilar, 1946-
dc.date.accessioned2018-04-10T10:20:00Z
dc.date.available2018-04-10T10:20:00Z
dc.date.issued2017
dc.date.updated2018-04-10T10:20:00Z
dc.description.abstractThe Riemann hypothesis is an unproven statement referring to the zeros of the Riemann zeta function. Bernhard Riemann calculated the first six non-trivial zeros of the function and observed that they were all on the same straight line. In a report published in 1859, Riemann stated that this might very well be a general fact. The Riemann hypothesis claims that all non-trivial zeros of the zeta function are on the the line x = 1/2. The more than ten billion zeroes calculated to date, all of them lying on the critical line, coincide with Riemann's suspicion, but no one has yet been able to prove that the zeta function does not have non-trivial zeroes outside of this line.
dc.format.extent7 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec672313
dc.identifier.issn2174-3487
dc.identifier.urihttps://hdl.handle.net/2445/121383
dc.language.isoeng
dc.publisherUniversitat de València
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.7203/metode.0.8903
dc.relation.ispartofMètode. Science Studies Journal, 2017, vol. 93, num. 8, p. 59-65
dc.relation.urihttps://doi.org/10.7203/metode.0.8903
dc.rightscc-by-nc-nd (c) Bayer i Isant, Pilar, 1946-, 2017
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es
dc.sourceArticles publicats en revistes (Matemàtiques i Informàtica)
dc.subject.classificationNombres primers
dc.subject.classificationFuncions de variables complexes
dc.subject.otherPrime numbers
dc.subject.otherFunctions of complex variables
dc.titleThe Riemann hypothesis: The great pending mathematical challenge
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
672313.pdf
Mida:
3.51 MB
Format:
Adobe Portable Document Format