Lee HWA Chung theorem for presympectic manifolds. Canonical transformations for constrained systems
| dc.contributor.author | Gomis Torné, Joaquim | cat |
| dc.contributor.author | Llosa, Josep | cat |
| dc.contributor.author | Román-Roy, Narciso | cat |
| dc.date.accessioned | 2012-04-26T07:56:29Z | |
| dc.date.available | 2012-04-26T07:56:29Z | |
| dc.date.issued | 1984 | |
| dc.description.abstract | We generalize the analogous of Lee Hwa Chungs theorem to the case of presymplectic manifolds. As an application, we study the canonical transformations of a canonical system (M, S, O). The role of Dirac brackets as a test of canonicity is clarified. | eng |
| dc.format.extent | 8 p. | |
| dc.format.mimetype | application/pdf | |
| dc.identifier.idgrec | 7136 | |
| dc.identifier.issn | 0022-2488 | |
| dc.identifier.uri | https://hdl.handle.net/2445/24514 | |
| dc.language.iso | eng | eng |
| dc.publisher | American Institute of Physics | |
| dc.relation.isformatof | Reproducció del document proporcionada per AIP i http://dx.doi.org/10.1063/1.526303 | |
| dc.relation.ispartof | Journal of Mathematical Physics, 1984, vol. 25, p. 1348-1355 | |
| dc.relation.uri | http://dx.doi.org/10.1063/1.526303 | |
| dc.rights | (c) American Institute of Physics, 1984 | |
| dc.rights.accessRights | info:eu-repo/semantics/openAccess | |
| dc.source | Articles publicats en revistes (Física Quàntica i Astrofísica) | |
| dc.subject.classification | Camps vectorials | cat |
| dc.subject.classification | Física matemàtica | cat |
| dc.subject.classification | Teoria quàntica | cat |
| dc.subject.classification | Dinàmica | cat |
| dc.subject.other | Vector fields | eng |
| dc.subject.other | Mathematical physics | eng |
| dc.subject.other | Quantum theory | eng |
| dc.subject.other | Dynamics | eng |
| dc.title | Lee HWA Chung theorem for presympectic manifolds. Canonical transformations for constrained systems | eng |
| dc.type | info:eu-repo/semantics/article | |
| dc.type | info:eu-repo/semantics/publishedVersion |
Fitxers
Paquet original
1 - 1 de 1